zbMATH — the first resource for mathematics

Separable wave equations for gravitoelectromagnetic perturbations of rotating charged black strings. (English) Zbl 1329.83191

83E30 String and superstring theories in gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
35L05 Wave equation
83C57 Black holes
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
Full Text: DOI arXiv
[1] Banados M, Teitelboim C and Zanelli J 1992 The black hole in three-dimensional space–time Phys. Rev. Lett.69 1849 · Zbl 0968.83514
[2] Martinez C, Teitelboim C and Zanelli J 2000 Charged rotating black hole in three space–time dimensions Phys. Rev. D 61 104013
[3] Zanchin V T and Miranda A S 2004 Spherical and planar three-dimensional anti-de Sitter black holes Class. Quantum Grav.21 875 · Zbl 1055.83025
[4] Carlip S 1995 The (2+1)-dimensional black hole Class. Quantum Grav.12 2853
[5] Carlip S 2005 Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole Class. Quantum Grav.22 R85
[6] Witten E 2007 Three-dimensional gravity revisited arXiv:0706.3359[hep-th]
[7] Maldacena J and Susskind L 2013 Cool horizons for entangled black holes Fortsch. Phys.61 781 · Zbl 1338.83057
[8] Jensen K and Karch A 2013 Holographic dual of an Einstein–Podolsky–Rosen pair has a wormhole Phys. Rev. Lett.111 211602
[9] Sonner J 2013 Holographic Schwinger effect and the geometry of entanglement Phys. Rev. Lett.111 211603
[10] Gharibyan H and Penna R F 2014 Are entangled particles connected by wormholes? Evidence for the ER = EPR conjecture from entropy inequalities Phys. Rev. D 89 066001
[11] Chernicoff M, Güijosa A and Pedraza J F 2013 Holographic EPR pairs, wormholes and radiation J. High Energy Phys. JHEP10(2013)211 · Zbl 06615942
[12] Baez J C and Vicary J 2014 Wormholes and entanglement Class. Quantum Grav.31 214007
[13] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys.2 231 · Zbl 0914.53047
[14] Maldacena J M 1999 Int. J. Theor. Phys.38 1113 · Zbl 0969.81047
[15] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys.2 253 · Zbl 0914.53048
[16] Gubser S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from non-critical string theory Phys. Lett. B 428 105 · Zbl 1355.81126
[17] Aharony O, Gubser S S, Maldacena J M, Ooguri H and Oz Y 2000 Large N field theories, string theory and gravity Phys. Rep.323 183 · Zbl 1368.81009
[18] Son D T and Starinets A O 2007 Viscosity, black holes, and quantum field theory Ann. Rev. Nucl. Part. Sci.57 95
[19] Gubser S S 2007 Heavy ion collisions and black hole dynamics Gen. Relativ. Gravit.39 1533 · Zbl 1181.83117
[20] Gubser S S 2008 Int. J. Mod. Phys. D 17 673 · Zbl 1151.83338
[21] Myers R C and Vazquez S E 2008 Quark Soup al dente: applied superstring theory Class. Quantum Grav.25 114008 · Zbl 1144.83333
[22] Berti E, Cardoso V and Starinets A O 2009 Quasinormal modes of black holes and black branes Class. Quantum Grav.26 163001 · Zbl 1173.83001
[23] Herzog C P 2009 Lectures on holographic superfluidity and superconductivity J. Phys. A: Math. Gen.42 343001 · Zbl 1180.82218
[24] Hartnoll S A 2009 Lectures on holographic methods for condensed matter physics Class. Quantum Grav.26 224002 · Zbl 1181.83003
[25] McGreevy J 2010 Holographic duality with a view toward many-body physics Adv. High Energy Phys.2010 723105 · Zbl 1216.81118
[26] Hubeny V E and Rangamani M 2010 A holographic view on physics out of equilibrium Adv. High Energy Phys.2010 297916 · Zbl 1216.83028
[27] Hawking S W 1972 Black holes in general relativity Commun. Math. Phys.25 152
[28] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space–Time (Cambridge: Cambridge University Press) · Zbl 0265.53054
[29] Lemos J P S 1995 Two-dimensional black holes and planar general relativity Class. Quantum Grav.12 1081
[30] Cai R-G and Zhang Y-Z 1996 Black plane solutions in four-dimensional spacetimes Phys. Rev. D 54 4891
[31] Huang C G and Liang C B 1995 A torus-like black hole Phys. Lett. A 201 27 · Zbl 1020.83608
[32] Stachel J 1982 Globally stationary but locally static space–times: a gravitational analog of the Aharonov–Bohm effect Phys. Rev. D 26 1281
[33] Lemos J P S 1995 Cylindrical black hole in general relativity Phys. Lett. B 353 46
[34] Lemos J P S and Zanchin V T 1996 Rotating charged black string and three-dimensional black holes Phys. Rev. D 54 3840
[35] Edalati M, Jottar J I and Leigh R G 2010 Shear modes, criticality and extremal black holes J. High Energy Phys. JHEP04(2010)075 · Zbl 1272.81150
[36] Edalati M, Jottar J I and Leigh R G 2010 Holography and the sound of criticality J. High Energy Phys. JHEP10(2010)058 · Zbl 1291.81242
[37] Brattan D K 2010 Charged, conformal non-relativistic hydrodynamics J. High Energy Phys. JHEP10(2010)015 · Zbl 1291.81231
[38] Brattan D K and Gentle S A 2011 Shear channel correlators from hot charged black holes J. High Energy Phys. JHEP04(2011)082
[39] Davison R A and Kaplis N K 2011 Bosonic excitations of the AdS4 Reissner–Nordstrom black hole J. High Energy Phys. JHEP12(2011)037 · Zbl 1306.81211
[40] Ge X H, Jo K and Sin S J 2011 Hydrodynamics of RN AdS4 black hole and holographic optics J. High Energy Phys. JHEP03(2011)104 · Zbl 1301.81213
[41] Davison R A and Parnachev A 2013 Hydrodynamics of cold holographic matter J. High Energy Phys. JHEP06(2013)100 · Zbl 1342.83117
[42] Phukon P and Sarkar T 2013 R-charged black holes and holographic optics J. High Energy Phys. JHEP09(2013)102 · Zbl 1342.83305
[43] Kim K Y, Kim K K, Seo Y and Sin S J 2014 Coherent/incoherent metal transition in a holographic model J. High Energy Phys. JHEP12(2014)170 · Zbl 06566084
[44] Blake M, Donos A and Tong D 2015 Holographic charge oscillations J. High Energy Phys. JHEP04(2015)019 · Zbl 1388.83392
[45] Guica M, Hartman T, Song W and Strominger A 2009 The Kerr/CFT correspondence Phys. Rev. D 80 124008
[46] Lu H, Mei J and Pope C N 2009 Kerr/CFT correspondence in diverse dimensions J. High Energy Phys. JHEP04(2009)054
[47] Dias O J C, Reall H S and Santos J E 2009 Kerr-CFT and gravitational perturbations J. High Energy Phys. JHEP08(2009)101
[48] Guica M and Strominger A 2011 Microscopic realization of the Kerr/CFT correspondence J. High Energy Phys. JHEP02(2011)010 · Zbl 1294.81199
[49] Mei J 2012 On the general Kerr/CFT correspondence in arbitrary dimensions J. High Energy Phys. JHEP04(2012)113 · Zbl 1348.83051
[50] Compere G 2012 The Kerr/CFT correspondence and its extensions: a comprehensive review Living Rev. Relativ.15 11 · Zbl 1320.83001
[51] Newman E T, Couch R, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a rotating, charged mass J. Math. Phys.6 918
[52] Lee C A 1976 Coupled gravitational and electromagnetic perturbations around a charged black hole J. Math. Phys.17 1226
[53] Chitre D M 1976 Perturbations of charged black holes Phys. Rev. D 13 2713
[54] Chandrasekhar S 1978 The gravitational perturbations of the Kerr black hole: I. The perturbations in the quantities which vanish in the stationary state Proc. R. Soc. A 358 421
[55] Hartman T, Murata K, Nishioka T and Strominger A 2009 CFT duals for extreme black holes J. High Energy Phys. JHEP04(2009)019
[56] Hartman T, Song W and Strominger A 2010 Holographic derivation of Kerr–Newman scattering amplitudes for general charge and spin J. High Energy Phys. JHEP03(2010)118 · Zbl 1271.83054
[57] Mark Z, Yang H, Zimmerman A and Chen Y 2015 Quasinormal modes of weakly charged Kerr–Newman spacetimes Phys. Rev. D 91 044025
[58] Pani P, Berti E and Gualtieri L 2013 Gravitoelectromagnetic perturbations of Kerr–Newman black holes: stability and isospectrality in the slow-rotation limit Phys. Rev. Lett.110 241103
[59] Pani P, Berti E and Gualtieri L 2013 Scalar, electromagnetic and gravitational perturbations of Kerr–Newman black holes in the slow-rotation limit Phys. Rev. D 88 064048
[60] Dias O J C, Godazgar M and Santos J E 2015 Linear mode stability of the Kerr–Newman black hole and its quasinormal modes Phys. Rev. Lett.114 151101
[61] Zilhão M, Cardoso V, Herdeiro C, Lehner L and Sperhake U 2014 Testing the nonlinear stability of Kerr–Newman black holes Phys. Rev. D 90 124088
[62] Chandrasekhar S and Detweiler S 1975 Equations governing axisymmetric perturbations of the Kerr black-hole Proc. R. Soc. A 345 145
[63] Chandrasekhar S 1979 On the equations governing the perturbations of the Reissner–Nordstrom black hole Proc. R. Soc. A 365 453
[64] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (New York: Oxford University Press)
[65] Newman E and Penrose R 1962 An approach to gravitational radiation by a method of spin coefficients J. Math. Phys.3 566 · Zbl 0108.40905
[66] Dehghani M H 2002 Thermodynamics of rotating charged black strings and (A)dS/CFT correspondence Phys. Rev. D 66 044006
[67] Kinnersley W 1969 Type D vacuum metrics J. Math. Phys.10 1195 · Zbl 0182.30202
[68] Goldberg J N and Sachs R K 1962 A theorem on Petrov types Acta Phys. Pol.22 13 · Zbl 0113.44807
[69] Reprinted in 2009 Gen. Relativ. Gravit.41 433 · Zbl 1162.83004
[70] Bardeen J M and Press W H 1973 Radiation fields in the Schwarzschild background J. Math. Phys.14 7
[71] Teukolsky S A 1973 Perturbations of a rotating black hole: I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations Astrophys. J.185 635
[72] Sachs R K 1964 Gravitational radiation Relativity, Groups and Topology ed C DeWitt and B DeWitt (New York: Gordon and Breach)
[73] Heading J 1977 Resolution of the mystery behind Chandrasekhar’s black hole transformations J. Phys. A: Math. Gen.10 885
[74] Kodama H and Ishibashi A 2004 Master equations for perturbations of generalized static black holes with charge in higher dimensions Prog. Theor. Phys.111 29 · Zbl 1073.83029
[75] Miranda A S, Morgan J and Zanchin V T 2008 Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence J. High Energy Phys. JHEP11(2008)030
[76] Morgan J, Miranda A S and Zanchin V T 2013 Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence J. High Energy Phys. JHEP03(2013)169 · Zbl 1342.83194
[77] Witten E 1981 Dynamical breaking of supersymmetry Nucl. Phys. B 188 513 · Zbl 1258.81046
[78] Cooper F and Freedman B 1983 Aspects of supersymmetric quantum mechanics Ann. Phys.146 262
[79] Cooper F, Khare A and Sukhatme U 1995 Supersymmetry and quantum mechanics Phys. Rep.251 267
[80] Leung P T, van den Brink A M, Suen W M, Wong C W and Young K 1999 SUSY transformations for quasinormal and total transmission modes of open systems arXiv:[math-ph/9909030]
[81] Cardoso V and Lemos J P S 2001 Quasinormal modes of Schwarzschild anti-de Sitter black holes: electromagnetic and gravitational perturbations Phys. Rev. D 64 084017
[82] Bakas I 2009 Energy–momentum/cotton tensor duality for AdS(4) black holes J. High Energy Phys. JHEP01(2010)003 · Zbl 1243.83032
[83] Teukolsky S A 1972 Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations Phys. Rev. Lett.29 1114
[84] Witten E 2003 SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry From Fields to Strings ed M Shifman et al pp 1173–200 vol 2 (Singapore: World Scientific) (arXiv:[hep-th/0307041])
[85] Herzog C P, Kovtun P, Sachdev S and Son D T 2007 Quantum critical transport, duality, and M-theory Phys. Rev. D 75 085020
[86] Hartnoll S A and Herzog C P 2007 Ohm’s law at strong coupling: S duality and the cyclotron resonance Phys. Rev. D 76 106012
[87] de Haro S and Gao P 2007 Electric-magnetic duality and deformations of three-dimensional CFTs Phys. Rev. D 76 106008
[88] Myers R C, Sachdev S and Singh A 2011 Holographic quantum critical transport without self-duality Phys. Rev. D 83 066017
[89] Henneaux M and Teitelboim C 2005 Duality in linearized gravity Phys. Rev. D 71 024018
[90] de Haro S 2009 Dual gravitons in AdS(4)/CFT(3) and the holographic cotton tensor J. High Energy Phys. JHEP01(2009)042 · Zbl 1243.83068
[91] Bakas I 2009 Duality in linearized gravity and holography Class. Quantum Grav.26 065013 · Zbl 1162.83321
[92] Sadeghi J, Pahlavani M R and Farahani H 2010 The AdS(4) gravitational perturbation and supersymmetry Int. J. Theor. Phys.49 914 · Zbl 1190.83099
[93] Wald R M 1978 Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations Phys. Rev. Lett.41 203
[94] Wald R M 1979 Construction of metric and vector potential perturbations of a Reissner–Nordström black hole Proc. R. Soc.369 67
[95] Chrzanowski P L 1975 Vector potential and metric perturbations of a rotating black hole Phys. Rev. D 11 2042
[96] Kegeles L S and Cohen J M 1979 Constructive procedure for perturbations of space–times Phys. Rev. D 19 1641
[97] Stewart J M and Walker M 1974 Perturbations of spacetimes in general relativity Proc. R. Soc. A 341 49
[98] Sasaki M and Nakamura T 1981 The Regge–Wheeler equation with sources for both even and odd parity perturbations of the Schwarzschild geometry Phys. Lett. A 87 85
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.