×

zbMATH — the first resource for mathematics

Hot multiboundary wormholes from bipartite entanglement. (English) Zbl 1329.83063

MSC:
83C15 Exact solutions to problems in general relativity and gravitational theory
54F65 Topological characterizations of particular spaces
53Z05 Applications of differential geometry to physics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C57 Black holes
94A17 Measures of information, entropy
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena J M 2003 Eternal black holes in anti-de Sitter J. High Energy Phys. JHEP04(2003)021
[2] van Raamsdonk M 2010 Building up spacetime with quantum entanglement Gen. Relativ. Gravit.42 2323–9 · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[3] Czech B, Karczmarek J L, Nogueira F and van Raamsdonk M 2012 Rindler quantum gravity Class. Quantum Grav.29 235025 · Zbl 1258.83029
[4] Maldacena J and Susskind L 2013 Cool horizons for entangled black holes Fortschr. Phys.61 781–811 · Zbl 1338.83057 · doi:10.1002/prop.201300020
[5] Hubeny V E, Rangamani M and Takayanagi T 2007 A covariant holographic entanglement entropy proposal J. High Energy Phys. JHEP07(2007)062
[6] Lewkowycz A and Maldacena J 2013 Generalized gravitational entropy J. High Energy Phys. JHEP13(2013)1 · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[7] Ryu S and Takayanagi T 2006 Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett.96 181602 · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[8] Marolf D and Wall A C 2013 Eternal Black Holes and Superselection in AdS/CFT Class. Quantum Grav.30 025001 · Zbl 1263.83100
[9] Morrison I A and Roberts M M 2013 Mutual information between thermo-field doubles and disconnected holographic boundaries J. High Energy Phys. JHEP07(2013)081 · Zbl 1342.83195 · doi:10.1007/JHEP07(2013)081
[10] Vidal G 2009 Entanglement Renormalization: An Introduction arXiv:0912.1651
[11] Susskind L 2014 Computational Complexity and Black Hole Horizons arXiv:1403.5695
[12] Balasubramanian V, Hayden P, Maloney A, Marolf D and Ross S F 2014 Multiboundary wormholes and holographic entanglement Class. Quantum Grav.31 185015 · Zbl 1300.81067
[13] Susskind L 2014 ER = EPR, GHZ, and the Consistency of Quantum Measurements arXiv:1412.8483
[14] Swingle B 2012 Entanglement renormalization and holography Phys. Rev. D 86 065007 · doi:10.1103/PhysRevD.86.065007
[15] Swingle B 2012 Constructing Holographic Spacetimes Using Entanglement Renormalization arXiv:1209.3304
[16] Hartman T and Maldacena J 2013 Time Evolution of Entanglement Entropy from Black Hole Interiors J. High Energy Phys. JHEP05(2013)014 · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[17] Hubeny V E, Maxfield H, Rangamani M and Tonni E 2013 Holographic entanglement plateaux J. High Energy Phys. JHEP08(2013)092 · Zbl 06615644 · doi:10.1007/JHEP08(2013)092
[18] Headrick M 2014 General properties of holographic entanglement entropy J. High Energy Phys. JHEP03(2014)085 · Zbl 06564502 · doi:10.1007/JHEP03(2014)085
[19] Hayden P, Headrick M and Maloney A 2013 Holographic Mutual Information is Monogamous Phys. Rev. D 87 046003 · doi:10.1103/PhysRevD.87.046003
[20] Brill D R 1996 Multi-black hole geometries in (2+1)-dimensional gravity Phys. Rev. D 53 4133–76 · doi:10.1103/PhysRevD.53.R4133
[21] Aminneborg S, Bengtsson I, Brill D, Holst S and Peldan P 1998 Black holes and wormholes in (2+1)-dimensions Class. Quantum Grav.15 627–44
[22] Brill D 2000 Black holes and wormholes in (2+1)-dimensions Lect. Notes Phys.537 143 · doi:10.1007/3-540-46671-1_6
[23] Aminneborg S, Bengtsson I and Holst S 1999 A Spinning anti-de Sitter wormhole Class. Quantum Grav.16 363–82
[24] Krasnov K 2000 Holography and Riemann surfaces Adv. Theor. Math. Phys.4 929–79
[25] Krasnov K 2003 Black hole thermodynamics and Riemann surfaces Class. Quantum Grav.20 2235–50
[26] Skenderis K and van Rees B C 2011 Holography and wormholes in 2+1 dimensions Commun. Math. Phys.301 583–626 · Zbl 1223.83037 · doi:10.1007/s00220-010-1163-z
[27] Faulkner T 2013 The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT arXiv:1303.7221
[28] Bao N et al 2015 Holographic Entropy Cone arXiv:1505.0783 · Zbl 1388.83177
[29] Pastawski F, Yoshida B, Harlow D and Preskill J 2015 Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence arXiv:1503.0623 · Zbl 1388.81094
[30] Banados M, Henneaux M, Teitelboim C and Zanelli J 1993 Geometry of the (2+1) black hole Phys. Rev. D 48 1506–25 · doi:10.1103/PhysRevD.48.1506
[31] Friedman J L, Schleich K and Witt D M 1993 Topological censorship Phys. Rev. Lett.71 1486–9 · Zbl 0934.83033 · doi:10.1103/PhysRevLett.71.1486
[32] Galloway G, Schleich K, Witt D and Woolgar E 1999 Topological censorship and higher genus black holes Phys. Rev. D 60 104039 · doi:10.1103/PhysRevD.60.104039
[33] Maxfield H 2014 Entanglement Entropy in Three Dimensional Gravity arXiv:1412.0687 · Zbl 1388.83555
[34] Almheiri A, Dong X and Harlow D 2014 Bulk Locality and Quantum Error Correction in AdS/CFT arXiv:1411.7041 · Zbl 1388.81095
[35] Louko J and Marolf D 1999 Single exterior black holes and the AdS/CFT conjecture Phys. Rev. D 59 066002 · doi:10.1103/PhysRevD.59.066002
[36] Louko J, Marolf D and Ross S F 2000 On geodesic propagators and black hole holography Phys. Rev. D 62 044041 · doi:10.1103/PhysRevD.62.044041
[37] Czech B, Evenbly G, Lamprou L, McCandlish S, Qi X, Sully J and Vidal G To appear
[38] Evenbly G and Vidal G 2011 Tensor network states and geometry J. Stat. Phys.145 891–918 · Zbl 1231.82021 · doi:10.1007/s10955-011-0237-4
[39] Evenbly G and Vidal G 2014 Tensor Network Renormalization arXiv:1412.0732 · Zbl 1310.82021
[40] Evenbly G and Vidal G 2015 Tensor Network Renormalization Yields the Multi-Scale Entanglement Renormalization ansatz arXiv:1502.0538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.