zbMATH — the first resource for mathematics

On integrable deformations of superstring sigma models related to \(\mathrm{AdS}_n \times \mathrm{S}^n\) supercosets. (English) Zbl 1329.81317
Summary: We consider two integrable deformations of 2d sigma models on supercosets associated with \(\mathrm{AdS}_n \times \mathrm{S}^n\). The first, the “\(\eta\)-deformation” (based on the Yang-Baxter sigma model), is a one-parameter generalization of the standard superstring action on \(\mathrm{AdS}_n \times \mathrm{S}^n\), while the second, the “\(\lambda\)-deformation” (based on the deformed gauged WZW model), is a generalization of the non-abelian T-dual of the \(\mathrm{AdS}_n \times \mathrm{S}^n\) superstring. We show that the \(\eta\)-deformed model may be obtained from the \(\lambda\)-deformed one by a special scaling limit and analytic continuation in coordinates combined with a particular identification of the parameters of the two models. The relation between the couplings and deformation parameters is consistent with the interpretation of the first model as a real quantum deformation and the second as a root of unity quantum deformation. For the \(\mathrm{AdS}_2 \times \mathrm{S}^2\) case we then explore the effect of this limit on the supergravity background associated with the \(\lambda\)-deformed model. We also suggest that the two models may form a dual Poisson-Lie pair and provide direct evidence for this in the case of the integrable deformations of the coset associated with \(\mathrm{S}^2\).

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T10 Model quantum field theories
81T20 Quantum field theory on curved space or space-time backgrounds
16T25 Yang-Baxter equations
14D15 Formal methods and deformations in algebraic geometry
83E50 Supergravity
Full Text: DOI arXiv
[1] Delduc, F.; Magro, M.; Vicedo, B.; Delduc, F.; Magro, M.; Vicedo, B., Derivation of the action and symmetries of the q-deformed \(\mathit{AdS}_5 \times S^5\) superstring, Phys. Rev. Lett., J. High Energy Phys., 1410, 5, 132, (2014) · Zbl 1333.81322
[2] Klimcik, C., Yang-Baxter sigma models and ds/AdS T duality, J. High Energy Phys., 0212, 051, (2002)
[3] Klimcik, C.; Klimcik, C., Integrability of the bi-Yang-Baxter sigma-model, J. Math. Phys., Lett. Math. Phys., 104, 1095, (2014) · Zbl 1359.70102
[4] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable sigma-models, J. High Energy Phys., 1311, 192, (2013) · Zbl 1342.81182
[5] Hollowood, T. J.; Miramontes, J. L.; Schmidtt, D. M., Integrable deformations of strings on symmetric spaces, J. High Energy Phys., 1411, 009, (2014) · Zbl 1333.81341
[6] Hollowood, T. J.; Miramontes, J. L.; Schmidtt, D. M., An integrable deformation of the \(\mathit{AdS}_5 \times S^5\) superstring, J. Phys. A, 47, 49, 495402, (2014) · Zbl 1305.81120
[7] Sfetsos, K., Integrable interpolations: from exact CFTs to non-abelian T-duals, Nucl. Phys. B, 880, 225, (2014) · Zbl 1284.81257
[8] Klimcik, C.; Severa, P.; Klimcik, C.; Severa, P., Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett. B, Phys. Lett. B, 372, 65, (1996) · Zbl 1037.81576
[9] Klimcik, C.; Severa, P., Dressing cosets, Phys. Lett. B, 381, 56, (1996) · Zbl 0979.81512
[10] Alekseev, A. Y.; Klimcik, C.; Tseytlin, A. A., Quantum Poisson-Lie T duality and WZNW model, Nucl. Phys. B, 458, 430, (1996) · Zbl 1003.81511
[11] Sfetsos, K.; Sfetsos, K., Poisson-Lie T duality beyond the classical level and the renormalization group, Nucl. Phys. B, Phys. Lett. B, 432, 365, (1998)
[12] Squellari, R., Dressing cosets revisited, Nucl. Phys. B, 853, 379, (2011) · Zbl 1229.81258
[13] Hoare, B.; Roiban, R.; Tseytlin, A. A., On deformations of \(\mathit{AdS}_n \times S^n\) supercosets, J. High Energy Phys., 1406, 002, (2014)
[14] J.L. Miramontes, unpublished draft.
[15] Beisert, N.; Koroteev, P.; Hoare, B.; Hollowood, T. J.; Miramontes, J. L., Q-deformation of the \(\mathit{AdS}_5 \times S^5\) superstring S-matrix and its relativistic limit, J. Phys. A, J. High Energy Phys., 1203, 015, (2012) · Zbl 1309.81186
[16] Arutyunov, G.; Borsato, R.; Frolov, S., S-matrix for strings on η-deformed \(\mathit{AdS}_5 \times S^5\), J. High Energy Phys., 1404, 002, (2014)
[17] Engelund, O. T.; Roiban, R., On the asymptotic states and the quantum S matrix of the η-deformed \(\mathit{AdS}_5 \times S^5\) superstring, J. High Energy Phys., 1503, 168, (2015)
[18] Hoare, B.; Hollowood, T. J.; Miramontes, J. L., Restoring unitarity in the q-deformed world-sheet S-matrix, J. High Energy Phys., 1310, 050, (2013)
[19] Sfetsos, K.; Thompson, D. C., Spacetimes for λ-deformations, J. High Energy Phys., 1412, 164, (2014)
[20] Demulder, S.; Sfetsos, K.; Thompson, D. C., Integrable λ-deformations: squashing coset CFTs and \(\mathit{AdS}_5 \times S^5\) · Zbl 1388.83790
[21] Metsaev, R. R.; Tseytlin, A. A., Type IIB superstring action in \(\mathit{AdS}_5 \times S^5\) background, Nucl. Phys. B, 533, 109, (1998) · Zbl 0956.81063
[22] Berkovits, N.; Bershadsky, M.; Hauer, T.; Zhukov, S.; Zwiebach, B., Superstring theory on \(\mathit{AdS}_2 \times S^2\) as a coset supermanifold, Nucl. Phys. B, 567, 61, (2000) · Zbl 0951.81040
[23] Tseytlin, A. A., On a “universal” class of WZW type conformal models, Nucl. Phys. B, 418, 173, (1994) · Zbl 1009.81560
[24] Witten, E.; Spiegelglas, M.; Yankielowicz, S., G/G topological field theories by cosetting G(k), Commun. Math. Phys., Nucl. Phys. B, 393, 301, (1993) · Zbl 1245.81248
[25] Fateev, V. A.; Onofri, E.; Zamolodchikov, A. B., The sausage model (integrable deformations of \(O(3)\) sigma model), Nucl. Phys. B, 406, 521, (1993) · Zbl 0990.81683
[26] Fateev, V. A.; Lukyanov, S. L., The integrable harmonic map problem versus Ricci flow, Nucl. Phys. B, Nucl. Phys. B, 865, 308, (2012) · Zbl 1262.81145
[27] Grigoriev, M.; Tseytlin, A. A., Pohlmeyer reduction of \(\mathit{AdS}_5 \times S^5\) superstring sigma model, Nucl. Phys. B, 800, 450, (2008) · Zbl 1292.81114
[28] Hoare, B., Towards a two-parameter q-deformation of \(\mathit{AdS}_3 \times S^3 \times M^4\) superstrings, Nucl. Phys. B, 891, 259, (2015) · Zbl 1328.81178
[29] Lunin, O.; Roiban, R.; Tseytlin, A. A., Supergravity backgrounds for deformations of \(\mathit{AdS}_n \times S^n\) supercoset string models, Nucl. Phys. B, 891, 106, (2015) · Zbl 1328.81182
[30] Mikhailov, A.; Schafer-Nameki, S., Sine-Gordon-like action for the superstring in \(\mathit{AdS}_5 \times S^5\), J. High Energy Phys., 0805, 075, (2008)
[31] Grigoriev, M.; Tseytlin, A. A., On reduced models for superstrings on \(\mathit{AdS}_n \times S^n\), Int. J. Mod. Phys. A, 23, 2107, (2008) · Zbl 1146.81319
[32] Hull, C. M., Timelike T duality, de Sitter space, large N gauge theories and topological field theory, J. High Energy Phys., 9807, 021, (1998) · Zbl 0958.81085
[33] Arutyunov, G.; van Tongeren, S. J., \(\mathit{AdS}_5 \times S^5\) mirror model as a string sigma model, Phys. Rev. Lett., 113, 261605, (2014)
[34] Arutyunov, G.; de Leeuw, M.; van Tongeren, S. J.; Arutyunov, G.; van Tongeren, S. J., Double Wick rotating Green-Schwarz strings, Theor. Math. Phys., Teor. Mat. Fiz., 182, 1, 28, (2014)
[35] Berkovits, N.; Maldacena, J.; Beisert, N.; Ricci, R.; Tseytlin, A. A.; Wolf, M., Dual superconformal symmetry from \(\mathit{AdS}_5 \times S^5\) superstring integrability, J. High Energy Phys., Phys. Rev. D, 78, 126004, (2008)
[36] Balazs, L. K.; Balog, J.; Forgacs, P.; Mohammedi, N.; Palla, L.; Schnittger, J.; Balog, J.; Forgacs, P.; Mohammedi, N.; Palla, L.; Schnittger, J., On quantum T duality in sigma models, Phys. Rev. D, Nucl. Phys. B, 535, 461, (1998) · Zbl 0956.81064
[37] Vicedo, B., Deformed integrable σ-models, classical R-matrices and classical exchange algebra on Drinfel’d doubles · Zbl 1422.37037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.