×

zbMATH — the first resource for mathematics

Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. (English) Zbl 1329.76225

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
35Q35 PDEs in connection with fluid mechanics
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] D. S. Balsara, Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl., 151 (2004), pp. 149–184.
[2] D. S. Balsara, Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231 (2012), pp. 7504–7517.
[3] D. S. Balsara, T. Rumpf, M. Dumbser, and C.-D. Munz, Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228 (2009), pp. 2480–2516. · Zbl 1275.76169
[4] D. S. Balsara and D. Spicer, Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comput. Phys., 148 (1999), pp. 133–148. · Zbl 0930.76050
[5] D. S. Balsara and D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149 (1999), pp. 270–292. · Zbl 0936.76051
[6] J. U. Brackbill and D. C. Barnes, The effect of nonzero \(∇ · B\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35 (1980), pp. 426–430. · Zbl 0429.76079
[7] Y. Cheng, F. Li, J. Qiu, and L. Xu, Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys., (2013), pp. 255–280. · Zbl 1286.76162
[8] A. J. Christlieb, Y. Liu, Q. Tang, and Z. Xu, High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes, J. Comput. Phys., 281 (2015), pp. 334–351. · Zbl 1354.65164
[9] A. J. Christlieb, J. A. Rossmanith, and Q. Tang, Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics, J. Comput. Phys., 268 (2014), pp. 302–325. · Zbl 1349.76442
[10] W. Dai and P. R. Woodward, A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput. Phys., 142 (1998), pp. 331–369. · Zbl 0932.76048
[11] C. Evans and J. F. Hawley, Simulation of magnetohydrodynamic flow: A constrained transport method, Astrophys. J., 332 (1988), pp. 659–677.
[12] M. Fey and M. Torrilhon, A Constrained Transport Upwind Scheme for Divergence-Free Advection, in Hyperbolic Problems: Theory, Numerics, and Applications, T. Y. Hou and E. Tadmor, eds., Springer, New York, 2003, pp. 529–538. · Zbl 1134.76394
[13] T. A. Gardiner and J. M. Stone, An unsplit Godunov method for ideal MHD via constrained transport in three dimensions, J. Comput. Phys., 227 (2008), pp. 4123–4141. · Zbl 1317.76057
[14] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89–112. · Zbl 0967.65098
[15] C. Helzel, J. A. Rossmanith, and B. Taetz, An unstaggered constrained transport method for the \(3\)D ideal magnetohydrodynamic equations, J. Comput. Phys., 227 (2011), pp. 9527–9553. · Zbl 1369.76061
[16] C. Helzel, J. A. Rossmanith, and B. Taetz, A high-order unstaggered constrained-transport method for the three-dimensional ideal magnetohydrodynamic equations based on the method of lines, SIAM J. Sci. Comput., 35 (2013), pp. A623–A651. · Zbl 1369.76062
[17] X. Y. Hu, N. A. Adams, and C.-W. Shu, Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., 242 (2013), pp. 169–180. · Zbl 1311.76088
[18] P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys., 160 (2000), pp. 649–661. · Zbl 0967.76061
[19] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202–228. · Zbl 0877.65065
[20] G.-S. Jiang and C.-C. Wu, A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150 (1999), pp. 561–594. · Zbl 0937.76051
[21] F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput., 22 (2005), pp. 413–442. · Zbl 1123.76341
[22] F. Li and L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys., 231 (2012), pp. 2655–2675. · Zbl 1427.76135
[23] F. Li, L. Xu, and S. Yakovlev, Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys., 230 (2011), pp. 4828–4847. · Zbl 1416.76117
[24] C. Liang and Z. Xu, Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws, J. Sci. Comput., 58 (2014), pp. 41–60. · Zbl 1286.65102
[25] P. Londrillo and L. Del Zanna, High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530 (2000), pp. 508–524.
[26] P. Londrillo and L. Del Zanna, On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: The upwind constrained transport method, J. Comput. Phys., 195 (2004), pp. 17–48. · Zbl 1087.76074
[27] A. Mignone and P. Tzeferacos, A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme, J. Comput. Phys., 229 (2010), pp. 2117–2138. · Zbl 1303.76142
[28] K. G. Powell, An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More Than One Dimension), Tech. report 94-24, ICASE, Langley, VA, 1994.
[29] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154 (1999), pp. 284–309. · Zbl 0952.76045
[30] J. A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput., 28 (2006), pp. 1766–1797. · Zbl 1344.76092
[31] J. A. Rossmanith, High-Order Discontinuous Galerkin Finite Element Methods with Globally Divergence-Free Constrained Transport for Ideal MHD, preprint, arXiv:1310.4251, 2013.
[32] D. S. Ryu, F. Miniati, T. W. Jones, and A. Frank, A divergence-free upwind code for multidimensional magnetohydrodynamic flows, Astrophys. J., 509 (1998), pp. 244–255.
[33] H. De Sterck, Multi-dimensional upwind constrained transport on unstructured grids for “shallow water” magnetohydrodynamics, in Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, AIAA, 2001, p. 2623.
[34] M. Torrilhon, Locally divergence-preserving upwind finite volume schemes for magnetohydrodynamics, SIAM J. Sci. Comput., 26 (2005), pp. 1166–1191. · Zbl 1149.76693
[35] G. Tóth, The \(∇ · {B} = 0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161 (2000), pp. 605–652. · Zbl 0980.76051
[36] K. Waagan, A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics, J. Comput. Phys., 228 (2009), pp. 8609–8626. · Zbl 1287.76173
[37] T. Xiong, J.-M. Qiu, and Z. Xu, Parametrized positivity preserving flux limiters for high order finite difference WENO scheme solving compressible Euler equations, preprint, arXiv:1403.0594, 2014. · Zbl 1383.76365
[38] T. Xiong, J.-M. Qiu, and Z. Xu, A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows, J. Comput. Phys., 252 (2013), pp. 310–331. · Zbl 1349.76553
[39] Z. Xu, Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: One-dimensional scalar problem, Math. Comp., 83 (2014), pp. 2213–2238. · Zbl 1300.65063
[40] Z. Xu and D. Balsara, Divergence-Free WENO Reconstruction-Based Finite Volume Scheme for Solving Ideal MHD Equations on Triangular Meshes, preprint, arXiv:1110.0860, 2011. · Zbl 1373.76149
[41] S. Yakovlev, L. Xu, and F. Li, Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Sci., 4 (2013), pp. 80–91.
[42] X. Zhang and C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229 (2010), pp. 8918–8934. · Zbl 1282.76128
[43] U. Ziegler, A central-constrained transport scheme for ideal magnetohydrodynamics, J. Comput. Phys., 196 (2004), pp. 393–416. · Zbl 1115.76427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.