×

zbMATH — the first resource for mathematics

Strong solutions in the dynamical theory of compressible fluid mixtures. (English) Zbl 1329.76060

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35D35 Strong solutions to PDEs
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1007/s00220-009-0806-4 · Zbl 1165.76050 · doi:10.1007/s00220-009-0806-4
[2] DOI: 10.1512/iumj.2008.57.3391 · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[3] H. Amann, Nonlinear Analysis (Scuola Normale Superiore, 1991) pp. 27–50.
[4] DOI: 10.1146/annurev.fluid.30.1.139 · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[5] Boyer F., Asympt. Anal. 20 pp 175– (1999)
[6] Denk R., Memoirs of the American Mathematical Society, in: -Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type (2003)
[7] DOI: 10.1007/s00209-007-0120-9 · Zbl 1210.35066 · doi:10.1007/s00209-007-0120-9
[8] DOI: 10.1007/BF01163654 · Zbl 0615.47002 · doi:10.1007/BF01163654
[9] DOI: 10.1007/s00030-007-5023-2 · Zbl 1147.35008 · doi:10.1007/s00030-007-5023-2
[10] DOI: 10.1142/S0218202596000341 · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[11] DOI: 10.1007/3-7643-7698-8 · doi:10.1007/3-7643-7698-8
[12] Kotschote M., Adv. Math. Sci. Appl. 22 pp 319– (2012)
[13] DOI: 10.1016/S0167-2789(03)00030-7 · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[14] DOI: 10.1098/rspa.1998.0273 · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[15] DOI: 10.1007/978-1-4612-1116-7 · doi:10.1007/978-1-4612-1116-7
[16] Prüss J., Math. Biochem. 127 pp 311– (2002)
[17] DOI: 10.1007/BF02570748 · Zbl 0665.47015 · doi:10.1007/BF02570748
[18] DOI: 10.1007/s10231-005-0175-3 · Zbl 1232.35081 · doi:10.1007/s10231-005-0175-3
[19] DOI: 10.1007/3-7643-7601-5_13 · doi:10.1007/3-7643-7601-5_13
[20] DOI: 10.1007/BF01562053 · Zbl 0451.35092 · doi:10.1007/BF01562053
[21] DOI: 10.4213/mzm1611 · doi:10.4213/mzm1611
[22] Triebel H., Interpolation Theory, Function Spaces, Differential Operators (1978) · Zbl 0387.46033
[23] DOI: 10.1007/s00028-004-0161-z · Zbl 1104.45008 · doi:10.1007/s00028-004-0161-z
[24] DOI: 10.1007/s00208-012-0834-9 · Zbl 1264.35271 · doi:10.1007/s00208-012-0834-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.