×

zbMATH — the first resource for mathematics

On the sum of squares of degrees and products of adjacent degrees. (English) Zbl 1329.05071
Summary: The sum of the squares of the degrees of vertices and the sum of the products of degrees of adjacent vertices have been introduced as topological indices. They are of interest from both applied and pure mathematical points of view. Given their close relations and rather similar behaviors, we examine the difference between these two indices in this note, presenting extremal results as well as some interesting properties.

MSC:
05C07 Vertex degrees
05C05 Trees
05C10 Planar graphs; geometric and topological aspects of graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashrafi, A. R.; DoS˘lić, T.; Hamzeh, A., Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem., 65, 85-92, (2011) · Zbl 1265.05135
[2] Behtoei, A.; Jannesari, M.; Taeri, B., Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity, Appl. Math. Lett., 22, 1571-1576, (2009) · Zbl 1171.05350
[3] Chen, S.; Deng, H., Extremal \([n, n + 1]\)-graphs with respected to zeroth-order randic index, J. Math. Chem., 42, 555-564, (2007) · Zbl 1127.92048
[4] Chen, S.; Liu, W., Extremal Zagreb indices of graphs with a given number of cut edges, Graphs Combin., 30, 109-118, (2014) · Zbl 1292.05082
[5] Das, K., On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 63, 433-440, (2010) · Zbl 1265.05114
[6] Das, K.; Gutman, I.; Zhou, B., New upper bounds on Zagreb indices, J. Math. Chem., 46, 514-521, (2009) · Zbl 1200.92048
[7] Das, K.; Xu, K.; Nam, J., Zagreb indices of graphs, Front. Math. China., 10, 3, 567-582, (2015) · Zbl 1316.05029
[8] Delorme, C.; Favaron, O.; Rautenbach, D., On the randić index, Discrete Math., 257, 29-38, (2002) · Zbl 1009.05075
[9] Deng, H., A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem., 57, 597-616, (2007) · Zbl 1199.05052
[10] Gutman, I.; Das, K. C., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50, 83-92, (2004) · Zbl 1053.05115
[11] Gutman, I.; Rus˘c˘ić, B.; Trinajstić, N.; Wilcox, C. F., Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys., 62, 3399-3405, (1975)
[12] Gutman, I.; Trinajstić, N., Graph theory and molecular orbitals. total \(\pi\)-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, 535-538, (1972)
[13] Hfath-Tabar, G. H., Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 65, 79-84, (2011) · Zbl 1265.05146
[14] Khalifeh, M.; Yousefi-Azari, H.; Ashrafi, A., The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157, 804-811, (2009) · Zbl 1172.05314
[15] Liu, B.; Gutman, I., Upper bounds for Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem., 55, 439-446, (2006) · Zbl 1111.05020
[16] Li, S. C.; Zhao, Q., Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number, Math. Comput. Model., 54, 2869-2879, (2011) · Zbl 1234.05061
[17] Nikolić, S.; Kovac˘ević, G.; Milic˘ević, A.; Trinajstić, N., The Zagreb indices 30 years after, Croat. Chem. Acta, 76, 113-124, (2003)
[18] Nikolić, S.; Tolić, I. M.; Trinajstić, N.; Bauc˘ić, I., On the Zagreb indices as complexity indices, Croat. Chem. Acta, 73, 909-921, (2000)
[19] Randić, M., On characterization of molecular branching, J. Amer. Chem. Soc., 97, 6609-6615, (1975)
[20] Rautenbach, D., A note on trees of maximum weight and restricted degrees, Discrete Math., 271, 335-342, (2003) · Zbl 1022.05013
[21] Wang, H., Extremal trees with given degree sequence for the randić index, Discrete Math., 308, 3407-3411, (2008) · Zbl 1160.05016
[22] Wang, H., Functions on adjacent vertex degrees of trees with given degree sequence, Cent. Eur. J. Math., 12, 1656-1663, (2014) · Zbl 1295.05080
[23] Xia, F.; Chen, S., Ordering unicyclic graphs with respect to Zagreb indices, MATCH Commun. Math. Comput. Chem, 58, 663-673, (2007) · Zbl 1141.05054
[24] Xu, K., The Zagreb indices of graphs with a given clique number, Appl. Math. Lett., 24, 1026-1030, (2011) · Zbl 1216.05041
[25] Zhang, H.; Zhang, S., Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem., 55, 427-438, (2006) · Zbl 1106.05032
[26] Zhao, Q.; Li, S. C., On the maximum Zagreb indices of graphs with k cut vertices, Acta Appl. Math., 111, 93-106, (2010) · Zbl 1190.92050
[27] Zhou, B., Zagreb indices, MATCH Commun. Math. Comput. Chem., 52, 113-118, (2004) · Zbl 1077.05519
[28] Zhou, B.; Gutman, I., Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem., 54, 233-239, (2005) · Zbl 1087.05057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.