×

zbMATH — the first resource for mathematics

The primal-dual hybrid gradient method for semiconvex splittings. (English) Zbl 1328.68278

MSC:
68U10 Computing methodologies for image processing
65K05 Numerical mathematical programming methods
65K10 Numerical optimization and variational techniques
90C06 Large-scale problems in mathematical programming
90C25 Convex programming
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Software:
iPiano
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] L.T.H. An and P.D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), pp. 23–46. · Zbl 1116.90122
[2] F. Andreu, C. Ballester, V. Caselles, and J.M. Mazón, Minimizing total variation flow, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), pp. 867–872. · Zbl 0973.35113
[3] M. Artina, M. Fornasier, and F. Solombrino, Linearly constrained nonsmooth and nonconvex minimization, SIAM J. Optim., 23 (2013), pp. 1904–1937. · Zbl 1277.49039
[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438–457. · Zbl 1214.65036
[5] H. Attouch, J. Bolte, and B.F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2013), pp. 91–129. · Zbl 1260.49048
[6] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011. · Zbl 1218.47001
[7] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 2003.
[8] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, MA, 1987.
[9] A. Bonnet, Cracktip Is a Global Mumford-Shah Minimizer, Société Mathématique de France, Paris, 2001. · Zbl 1014.49009
[10] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120–145. · Zbl 1255.68217
[11] R. Chartrand, Nonconvex splitting for regularized low-rank + sparse decomposition, IEEE Trans. Signal Process., 60 (2012), pp. 5810–5819. · Zbl 1393.94190
[12] R. Chartrand and B. Wohlberg, A nonconvex ADMM algorithm for group sparsity with sparse groups, in IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.
[13] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function, J. Optim. Theory Appl., 162 (2014), pp. 107–132. · Zbl 1318.90058
[14] W. Deng and W. Yin, On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers, Tech. Report 12-52, UCLA CAM Report, revised 2014. · Zbl 1379.65036
[15] T.P. Dinh, H.M. Le, H.A. Le Thi, and F. Lauer, A difference of convex functions algorithm for switched linear regression, IEEE Trans. Automat. Control, 59 (2014), pp. 2277–2282. · Zbl 1360.62386
[16] E. Esser and X. Zhang, Nonlocal Patch-Based Image Inpainting through Minimization of a Sparsity Promoting Nonconvex Functional, tech. report, preprint, 2014.
[17] E. Esser, X. Zhang, and T.F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 1015–1046. · Zbl 1206.90117
[18] R. Garciga Otero and A. Iusem, Fixed-point methods for a certain class of operators, J. Optim. Theory Appl., 159 (2013), pp. 656–672. · Zbl 1293.47061
[19] G. Gilboa, N. Sochen, and Y.Y. Zeevi, Forward-and-backward diffusion processes for adaptive image enhancement and denoising, IEEE Trans. Signal Process., 11 (2002), pp. 689–703.
[20] G. Gilboa, N. Sochen, and Y.Y. Zeevi, Image sharpening by flows based on triple well potentials, J. Math. Imaging Vis., 20 (2004), pp. 121–131. · Zbl 1366.94051
[21] J. Huang and D. Mumford, Statistics of natural images and models, in Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 1999.
[22] A.N. Iusem, T. Pennanen, and B.F. Svaiter, Inexact variants of the proximal point algorithm without monotonicity, SIAM J. Optim., 13 (2003), pp. 1080–1097. · Zbl 1053.90134
[23] N. Komodakis and J.-C. Pesquet, Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems; available from \burlalthttps://hal.archives-ouvertes.fr/hal-01010437, 2014.
[24] D. Krishnan and R. Fergus, Fast image deconvolution using Hyper-Laplacian priors, in Proceedings of the 24th Annual Conference on Neural Information Processing Systems, 2009, pp. 1033–1041.
[25] G. Li and T.K. Pong, Global Convergence of Splitting Methods for Nonconvex Composite Optimization, arXiv preprint, http://arxiv.org/abs/1407.0753, 2014.
[26] J.M. Morel and S. Solimini, Variational Methods in Image Segmentation, Birkhäuser, Boston, 1995. · Zbl 0827.68111
[27] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577–685. · Zbl 0691.49036
[28] M. Nikolova, M.K. Ng, and C.-P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Trans. Image Process., 19 (2010), pp. 3073–3088. · Zbl 1371.94277
[29] P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: Inertial proximal algorithm for nonconvex optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1388–1419. · Zbl 1296.90094
[30] P. Ochs, A. Dosovitskiy, T. Pock, and T. Brox, An iterated \(ℓ_1\) algorithm for non-smooth non-convex optimization in computer vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013. · Zbl 1326.65078
[31] V. Ozolins, R. Lai, R. Caflisch, and S. Osher, Compressed plane waves yield a compactly supported multiresolution basis for the Laplace operator, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 1691–1696. · Zbl 1355.35054
[32] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization, in Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp. 1762–1769.
[33] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An algorithm for minimizing the piecewise smooth Mumford-Shah functional, in Proceedings of the 2009 IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, 2009.
[34] R.T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks. · Zbl 0932.90001
[35] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer, Berlin, 1998. · Zbl 0888.49001
[36] L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268. · Zbl 0780.49028
[37] R. Shefi and M. Teboulle, Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization, SIAM J. Optim., 24 (2014), pp. 269–297. · Zbl 1291.90176
[38] E. Strekalovskiy and D. Cremers, Real-time minimization of the piecewise smooth Mumford-Shah functional, in Proceedings of the European Conference on Computer Vision (ECCV), 2014, pp. 127–141.
[39] T. Teuber, G. Steidl, P. Gwosdek, C. Schmaltz, and J. Weickert, Dithering by differences of convex functions, SIAM J. Imaging Sci., 4 (2011), pp. 79–108. · Zbl 1214.49017
[40] T. Valkonen, A primal-dual hybrid gradient method for non-linear operators with applications to MRI, Inverse Problems, 30 (2014), 055012. · Zbl 1310.47081
[41] Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program., 142 (2013), pp. 397–434. · Zbl 1281.49030
[42] Y. Yu, On decomposing the proximal map, in Proceedings of the 27th Annual Conference on Neural Information Processing Systems, 2013, pp. 91–99.
[43] M. Zhu and T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, Tech. Report 08-34, UCLA Cam Report, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.