×

On the equivalence between logic programming semantics and argumentation semantics. (English) Zbl 1328.68211

Summary: In the current paper, we re-examine the connection between formal argumentation and logic programming from the perspective of semantics. We observe that one particular translation from logic programs to instantiated argumentation (the one described by Y. Wu et al. [Stud. Log. 93, No. 2–3, 383–403 (2009; Zbl 1189.68127)]) is able to serve as a basis for describing various equivalences between logic programming semantics and argumentation semantics. In particular, we are able to show equivalence between regular semantics for logic programming and preferred semantics for formal argumentation. We also show that there exist logic programming semantics (L-stable semantics) that cannot be captured by any abstract argumentation semantics.

MSC:

68T27 Logic in artificial intelligence
68N17 Logic programming
68Q55 Semantics in the theory of computing

Citations:

Zbl 1189.68127
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Prakken, H.; Sartor, G., Argument-based extended logic programming with defeasible priorities, J. Appl. Non-Class. Log., 7, 25-75 (1997) · Zbl 0877.68019
[2] Simari, G.; Loui, R., A mathematical treatment of defeasible reasoning and its implementation, Artif. Intell., 53, 125-157 (1992) · Zbl 1193.68238
[3] Dung, P., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games, Artif. Intell., 77, 321-357 (1995) · Zbl 1013.68556
[4] Wu, Y.; Caminada, M.; Gabbay, D., Complete extensions in argumentation coincide with 3-valued stable models in logic programming, Stud. Log., 93, 1-2, 383-403 (2009), special issue: new ideas in argumentation theory · Zbl 1189.68127
[5] Caminada, M., On the issue of reinstatement in argumentation, (Fischer, M.; van der Hoek, W.; Konev, B.; Lisitsa, A., Logics in Artificial Intelligence, 10th European Conference. Logics in Artificial Intelligence, 10th European Conference, JELIA 2006. Logics in Artificial Intelligence, 10th European Conference. Logics in Artificial Intelligence, 10th European Conference, JELIA 2006, LNAI, vol. 4160 (2006), Springer), 111-123 · Zbl 1152.68600
[6] Caminada, M.; Gabbay, D., A logical account of formal argumentation, Stud. Log., 93, 2-3, 109-145 (2009), special issue: new ideas in argumentation theory · Zbl 1188.03011
[7] Caminada, M.; Amgoud, L., An axiomatic account of formal argumentation, (Proceedings of the AAAI-2005 (2005)), 608-613
[8] Caminada, M.; Amgoud, L., On the evaluation of argumentation formalisms, Artif. Intell., 171, 5-6, 286-310 (2007) · Zbl 1168.68562
[9] Dung, P.; Kowalski, R.; Toni, F., Assumption-based argumentation, (Simari, G.; Rahwan, I., Argumentation in Artificial Intelligence (2009), Springer: Springer US), 199-218
[10] Lloyd, J. W., Foundations of Logic Programming (1987), Springer-Verlag New York, Inc.: Springer-Verlag New York, Inc. New York, NY, USA · Zbl 0547.68005
[11] Przymusinski, T., The well-founded semantics coincides with the three-valued stable semantics, Fundam. Inform., 13, 4, 445-463 (1990) · Zbl 0706.68029
[12] Przymusinski, T. C., Stable semantics for disjunctive programs, New Gener. Comput., 9, 401-424 (1991) · Zbl 0796.68053
[13] Saccà, D.; Zaniolo, C., Stable models and non-determinism in logic programs with negation, (Rosenkrantz, D. J.; Sagiv, Y., PODS (1990), ACM Press), 205-217
[14] You, J.-H.; Yuan, L. Y., On the equivalence of semantics for normal logic programs, J. Log. Program., 22, 3, 211-222 (1995) · Zbl 0830.68030
[15] Eiter, T.; Leone, N.; Saccá, D., On the partial semantics for disjunctive deductive databases, Ann. Math. Artif. Intell., 19, 1-2, 59-96 (1997) · Zbl 0880.68029
[16] Modgil, S.; Prakken, H., The ASPIC+ framework for structured argumentation: a tutorial, Argum. Comput., 5, 31-62 (2014)
[17] Vreeswijk, G., Abstract argumentation systems, Artif. Intell., 90, 225-279 (1997) · Zbl 1017.03513
[18] Gorogiannis, N.; Hunter, A., Instantiating abstract argumentation with classical logic arguments: postulates and properties, Artif. Intell., 175, 9-10, 1479-1497 (2011) · Zbl 1225.68248
[19] Caminada, M.; Verheij, B., On the existence of semi-stable extensions, (Danoy, G.; Seredynski, M.; Booth, R.; Gateau, B.; Jars, I.; Khadraoui, D., Proceedings of the 22nd Benelux Conference on Artificial Intelligence (2010))
[20] Weydert, E., Semi-stable extensions for infinite frameworks, (de Causmaecker, P.; Maervoet, J.; Messelis, T.; Verbeeck, K.; Vermeulen, T., Proceedings of the 23rd Benelux Conference on Artificial Intelligence (BNAIC 2011) (2011)), 336-343
[21] Wu, Y.; Caminada, M., A labelling-based justification status of arguments, Stud. Log., 3, 4, 12-29 (2010)
[22] Wu, Y.; Podlaszewski, M., Implementing crash-resistance and non-interference in logic-based argumentation, J. Log. Comput. (2014), in print. First published online: March 25, 2014 · Zbl 1322.68191
[23] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410 (2011)
[24] Osorio, M.; Nieves, J. C.; Santoyo, A., Complete extensions as Clark’s completion semantics, (ENC (2013), IEEE), 81-88
[25] Clark, K. L., Negation as failure, (Gallaire, H.; Minker, J., Logic and Data Bases (1978), Plenum Press: Plenum Press New York), 293-322
[26] Modgil, S.; Caminada, M., Proof theories and algorithms for abstract argumentation frameworks, (Rahwan, I.; Simari, G., Argumentation in Artificial Intelligence (2009), Springer), 105-129
[27] Caminada, M.; Podlaszewski, M., Grounded semantics as persuasion dialogue, (Verheij, B.; Szeider, S.; Woltran, S., Computational Models of Argument - Proceedings of COMMA 2012 (2012)), 478-485
[28] Caminada, M.; Podlaszewski, M., User-computer persuasion dialogue for grounded semantics, (Uiterwijk, J. W.; Roos, N.; Winands, M. H., Proceedings of BNAIC 2012, The 24th Benelux Conference on Artificial Intelligence (2012)), 343-344
[29] Caminada, M.; Dvořák, W.; Vesic, S., Preferred semantics as socratic discussion, J. Log. Comput. (2014), in print. First published online: February 12, 2014 · Zbl 1354.68250
[30] Nofal, S.; Atkinson, K.; Dunne, P., Algorithms for decision problems in argumentation systems under preferred semantics, Artif. Intell., 207, 23-51 (2014) · Zbl 1334.68210
[31] García, A.; Simari, G., Defeasible logic programming: an argumentative approach, Theory Pract. Log. Program., 4, 1, 95-138 (2004) · Zbl 1090.68015
[33] Caminada, M.; Sá, S.; Alcântara, J.; Dvořák, W., On the difference between assumption-based argumentation and abstract argumentation (2013), University of Aberdeen, Tech. rep.
[34] Caminada, M.; Sá, S.; Alcântara, J.; Dvořák, W., On the difference between assumption-based argumentation and abstract argumentation, (Hindriks, K.; de Weerdt, M.; van Riemsdijk, B.; Warnier, M., Proceedings BNAIC 2013 (2013)), 25-32
[35] Bondarenko, A.; Dung, P.; Kowalski, R.; Toni, F., An abstract, argumentation-theoretic approach to default reasoning, Artif. Intell., 93, 63-101 (1997) · Zbl 1017.03511
[36] Reiter, R., A logic for default reasoning, Artif. Intell., 13, 81-132 (1980) · Zbl 0435.68069
[37] Prakken, H., An abstract framework for argumentation with structured arguments, Argum. Comput., 1, 2, 93-124 (2010)
[38] Modgil, S.; Prakken, H., A general account of argumentation with preferences, Artif. Intell., 195, 361-397 (2013) · Zbl 1270.68284
[39] Pollock, J., Cognitive Carpentry. A Blueprint for How to Build a Person (1995), MIT Press: MIT Press Cambridge, MA
[40] Jakobovits, H.; Vermeir, D., Robust semantics for argumentation frameworks, J. Log. Comput., 9, 2, 215-261 (1999) · Zbl 0933.68088
[41] Caminada, M.; Pigozzi, G., On judgment aggregation in abstract argumentation, Auton. Agents Multi-Agent Syst., 22, 1, 64-102 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.