×

zbMATH — the first resource for mathematics

Bottom-\(k\) document retrieval. (English) Zbl 1328.68057
Summary: We consider the problem of retrieving the \(k\) documents from a collection of strings where a given pattern \(P\) appears least often. This has potential applications in data mining, bioinformatics, security, and big data. We show that adapting the classical linear-space solutions for this problem is trivial, but the compressed-space solutions are not easy to extend. We design a new solution for this problem that matches the best-known result when using \(2 | \mathsf{CSA} | + o(n)\) bits, where \(\mathsf{CSA}\) is a compressed suffix array. Our structure answers queries in the time needed by the \(\mathsf{CSA}\) to find the suffix array interval of the pattern plus \(O(k \lg k \lg^\varepsilon n)\) accesses to suffix array cells, for any constant \(\varepsilon > 0\).

MSC:
68P20 Information storage and retrieval of data
68P05 Data structures
68W32 Algorithms on strings
Software:
Wumpus
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baeza-Yates, R.; Ribeiro-Neto, B., Modern information retrieval, (2011), Addison-Wesley
[2] Belazzougui, D.; Navarro, G.; Valenzuela, D., Improved compressed indexes for full-text document retrieval, J. Discrete Algorithms, 18, 3-13, (2013) · Zbl 1268.68075
[3] Burns, L.; Hellerstein, J. L.; Ma, S.; Perng, C. S.; Rabenhorst, D. A.; Taylor, D., A systematic approach to discovering correlation rules for event management, (Proc. 7th IFIP/IEEE Intl. Symp. on Integrated Network Management, (2001))
[4] Büttcher, S.; Clarke, C.; Cormack, G., Information retrieval: implementing and evaluating search engines, (2010), MIT Press · Zbl 1211.68176
[5] Cagliero, L.; Garza, P., Infrequent weighted itemset mining using frequent pattern growth, IEEE Trans. Knowl. Data Eng., 26, 4, 903-915, (2014)
[6] Chan, T. M.; Durocher, S.; Skala, M.; Wilkinson, B., Linear-space data structures for range minority query in arrays, (Proc. SWAT, (2012)), 295-306 · Zbl 1318.68068
[7] Dong, X., Mining interesting infrequent and frequent itemsets based on minimum correlation strength, (Proc. AICI, LNAI, vol. 7002, (2011)), 437-443
[8] Durocher, S.; Shah, R.; Skala, M.; Thankachan, S. V., Linear-space data structures for range frequency queries on arrays and trees, (Proc. MFCS, (2013)), 325-336 · Zbl 1400.68062
[9] El-Falah, T.; Lecroq, T.; Elloumi, M., Extraction of infrequent simple motifs from a finite set of sequences using a lattice structure, Recent Pat DNA Gene Seq., 7, 2, 123-127, (2013)
[10] Fischer, J.; Gagie, T.; Kopelowitz, T.; Lewenstein, M.; Mäkinen, V.; Salmela, L.; Välimäki, N., Forbidden patterns, (Proc. 10th LATIN, LNCS, vol. 7256, (2012)), 327-337 · Zbl 1353.68066
[11] Gagie, T.; Kärkkäinen, J.; Navarro, G.; Puglisi, S. J., Colored range queries and document retrieval, Theor. Comput. Sci., 483, 36-50, (2013) · Zbl 1292.68045
[12] Gupta, A.; Mittal, A.; Bhattacharya, A., Minimally infrequent itemset mining using pattern-growth paradigm and residual trees, (2012), CoRR
[13] Haglin, D.; Manning, A., On minimal infrequent itemset mining, (Proc. DMIN, (2007)), 141-147
[14] Herold, J.; Kurtz, S.; Giegerich, R., Efficient computation of absent words in genomic sequences, BMC Bioinform., 9, 167, (2008)
[15] Hon, W.-K.; Shah, R.; Thankachan, S.; Vitter, J., Faster compressed top-k document retrieval, (Proc. 23rd DCC, (2013)), 341-350
[16] Hon, W.-K.; Shah, R.; Vitter, J., Space-efficient framework for top-k string retrieval problems, (Proc. 50th FOCS, (2009)), 713-722 · Zbl 1292.68182
[17] Ji, Y.; Ying, H.; Tran, J.; Dews, P.; Mansour, A.; Massanari, R. M., A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs, IEEE Trans. Knowl. Data Eng., 25, 4, 721-733, (2013)
[18] Manber, U.; Myers, G., Suffix arrays: a new method for on-line string searches, SIAM J. Comput., 22, 5, 935-948, (1993) · Zbl 0784.68027
[19] Navarro, G., Spaces, trees and colors: the algorithmic landscape of document retrieval on sequences, ACM Comput. Surv., 46, 4, (2014), art. 52 · Zbl 1305.68078
[20] Navarro, G.; Mäkinen, V., Compressed full-text indexes, ACM Comput. Surv., 39, 1, (2007), art. 2 · Zbl 1321.68263
[21] Navarro, G.; Nekrich, Y., Top-k document retrieval in optimal time and linear space, (Proc. 23rd SODA, (2012)), 1066-1078
[22] Navarro, G.; Thankachan, S., Faster top-k document retrieval in optimal space, (Proc. 20th SPIRE, LNCS, vol. 8214, (2013)), 255-262
[23] Navarro, G.; Thankachan, S., Top-k document retrieval in compact space and near-optimal time, (Proc. 24th ISAAC, LNCS, vol. 8283, (2013)), 394-404 · Zbl 1406.68022
[24] Navarro, G.; Valenzuela, D., Space-efficient top-k document retrieval, (Proc. 11th SEA, (2012)), 307-319
[25] Rahman, A.; Ezeife, C. I.; Aggarwal, A. K., WiFi miner: an online apriori-infrequent based wireless intrusion system, (Proc. Knowledge Discovery from Sensor Data, LNAI, vol. 5840, (2010)), 76-93
[26] Raman, R.; Raman, V.; Srinivasa Rao, S., Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM Trans. Algorithms, 3, 4, (2007), art. 43 · Zbl 1093.68582
[27] Sadakane, K., Succinct data structures for flexible text retrieval systems, J. Discrete Algorithms, 5, 12-22, (2007) · Zbl 1137.68360
[28] Shah, R.; Sheng, C.; Thankachan, S. V.; Vitter, J., Top-k document retrieval in external memory, (Proc. 21st ESA, LNCS, vol. 8125, (2013)), 803-814 · Zbl 1394.68129
[29] Tsur, D., Top-k document retrieval in optimal space, Inf. Process. Lett., 113, 12, 440-443, (2013) · Zbl 1371.68071
[30] Vens, C.; Danchin, E.; Rosso, M. N., Identifying proteins involved in parasitism by discovering degenerated motifs, (Proc. 4th International Workshop on Machine Learning in Systems Biology, (2010)), 81-84
[31] Weiner, P., Linear pattern matching algorithm, (Proc. 14th Annual IEEE Symposium on Switching and Automata Theory, (1973)), 1-11
[32] Wu, X.; Zhang, C.; Zhang, S., Efficient mining of both positive and negative association rules, ACM Trans. Inf. Syst., 22, 3, 381-405, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.