Spatial composite likelihood inference using local C-vines. (English) Zbl 1328.62324

Summary: We present a vine copula based composite likelihood approach to model spatial dependencies, which allows to perform prediction at arbitrary locations. It combines established methods to model (spatial) dependencies. On the one hand spatial differences between the variable locations are utilized to model the degree of spatial dependence. On the other hand the flexible class of C-vine copulas are used to model the spatial dependency structure locally. These local C-vine copulas are parametrized jointly, exploiting a relationship between the copula parameters and the corresponding spatial distances and elevation differences, and are combined in a composite likelihood approach. This spatial local C-vine composite likelihood (S-LCVCL) method benefits from the fact that it is able to capture non-Gaussian dependency structures. The development and validation of the new methodology is illustrated using a data set of daily mean temperatures observed at \(73\) observation stations spread over Germany. For validation continuous ranked probability scores are utilized. Comparison with another vine copula based approach and a Gaussian approach for spatial dependency modeling shows a preference for vine copula based (spatial) dependency structures.


62H11 Directional data; spatial statistics


gstat; VineCopula; Gstat; R; CDVine
Full Text: DOI arXiv


[1] Aas, K.; Czado, C.; Frigessi, A.; Bakken, H., Pair-copula constructions of multiple dependence, Insurance Math. Econom., 44, 2, 182-198, (2009) · Zbl 1165.60009
[2] Bedford, T.; Cooke, R. M., Probability density decomposition for conditionally dependent random variables modeled by vines, Ann. Math. Artif. Intell., 32, 245-268, (2001) · Zbl 1314.62040
[3] Bedford, T.; Cooke, R. M., Vines—a new graphical model for dependent random variables, Ann. Statist., 30, 4, 1031-1068, (2002) · Zbl 1101.62339
[4] Brechmann, E. C.; Schepsmeier, U., Modeling dependence with C- and D-vine copulas: the R package cdvine, J. Stat. Softw., 52, 3, 1-27, (2013), URL: http://www.jstatsoft.org/v52/i03/
[5] Caragea, P. C.; Smith, R. L., Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models, J. Multivariate Anal., 98, 7, 1417-1440, (2007) · Zbl 1116.62101
[6] Czado, C.; Schepsmeier, U.; Min, A., Maximum likelihood estimation of mixed C-vines with application to exchange rates, Stat. Model., 12, 3, 229-255, (2012)
[7] Eidsvik, J.; Shaby, B. A.; Reich, B. J.; Wheeler, M.; Niemi, J., Estimation and prediction in spatial models with block composite likelihoods, J. Comput. Graph. Statist., 23, 2, 295-315, (2014)
[8] Erhardt, T. M.; Czado, C.; Schepsmeier, U., R-vine models for spatial time series with an application to daily mean temperature, Biometrics, (2015) · Zbl 1390.62326
[9] Genest, C.; Ghoudi, K.; Rivest, L.-P., A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 3, 543-552, (1995) · Zbl 0831.62030
[10] Gneiting, T.; Raftery, A. E., Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., 102, 477, 359-378, (2007) · Zbl 1284.62093
[11] Gräler, B., Modelling skewed spatial random fields through the spatial vine copula, Spat. Stat., 10, 87-102, (2014)
[12] Hjort, N. L.; Omre, H.; Frisén, M.; Godtliebsen, F.; Helgeland, J.; Møller, J.; Jensen, E. B.V.; Rudemo, M.; Stryhn, H., Topics in spatial statistics, Scand. J. Statist., 21, 4, 289-357, (1994), [with discussion, comments and rejoinder]
[13] X. Hu, I. Steinsland, D. Simpson, S. Martino, H. Rue, Spatial modelling of temperature and humidity using systems of stochastic partial differential equations, 2013. http://arxiv.org/abs/1307.1402.
[14] Joe, H., Families of \(m\)-variate distributions with given margins and \(m(m - 1) / 2\) bivariate dependence parameters, (Rüschendorf, L.; Schweizer, B.; Taylor, M. D., Distributions with Fixed Marginals and Related Topics, Lecture Notes—Monograph Series, vol. 28, (1996), Institute of Mathematical Statistics), 120-141
[15] Joe, H., (Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability, vol. 73, (1997), Chapman & Hall/CRC) · Zbl 0990.62517
[16] Joe, H.; Xu, J. J., The estimation method of inference functions for margins for multivariate models. technical report 166, (1996), Department of Statistics, University of British Columbia
[17] Pebesma, E. J., Multivariable geostatistics in S: the gstat package, Comput. Geosci., 30, 683-691, (2004)
[18] R: A language and environment for statistical computing, (2014), R Foundation for Statistical Computing Vienna, Austria, URL: http://www.R-project.org/
[19] Šaltytė-Benth, J.; Benth, F. E.; Jalinskas, P., A spatial-temporal model for temperature with seasonal variance, J. Appl. Stat., 34, 7, 823-841, (2007)
[20] U. Schepsmeier, J. Stöber, E.C. Brechmann, B. Gräler, VineCopula: statistical inference of vine copulas. R package version 1.3, 2014. URL: http://CRAN.R-project.org/package=VineCopula.
[21] Sklar, A., Fonctions de répartition à n dimensions et leures marges, (Publications de l’Institut de Statistique de L’Université de Paris, Vol. 8, (1959), Institut Henri Poincaré), 229-231 · Zbl 0100.14202
[22] Stein, M. L.; Chi, Z.; Welty, L. J., Approximating likelihoods for large spatial data sets, J. Roy. Statist. Soc. Ser. B, 66, 2, 275-296, (2004) · Zbl 1062.62094
[23] Stöber, J.; Czado, C., Pair copula constructions, (Mai, J.-F.; Scherer, M., Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications, Series in Quantitative Finance, vol. 4, (2012), Imperial College Press), 185-230
[24] Varin, C.; Reid, N.; Firth, D., An overview of composite likelihood methods, Statist. Sinica, 21, 1, 5-42, (2011) · Zbl 05849508
[25] Vecchia, A. V., Estimation and model identification for continuous spatial processes, J. Roy. Statist. Soc. Ser. B, 50, 2, 297-312, (1988)
[26] Zhao, Y.; Joe, H., Composite likelihood estimation in multivariate data analysis, Canad. J. Statist., 33, 3, 335-356, (2005) · Zbl 1077.62045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.