×

Fire spotting effects in wildland fire propagation. (English) Zbl 1328.35340

Casas, Fernando (ed.) et al., Advances in differential equations and applications. Selected contributions given at the 23rd congress on differential equations and applications, CEDYA/13th congress of applied mathematics, CMA, September 9–13, 2013. Cham: Springer (ISBN 978-3-319-06952-4/hbk; 978-3-319-06953-1/ebook). SEMA SIMAI Springer Series 4, 203-214 (2015).
Summary: Wildland fire propagation is affected by events with random character. Two of them are turbulence, due to the Atmospheric Boundary Layer and to the fire-induced flow, and fire spotting, when sparks or embers are carried by convection and they start new fires when they land. Fire front position gets therefore a random character, too. A formulation which includes random effects due to both turbulence and fire spotting is discussed. It generalizes the level-set method for tracking random fronts. Under the assumption that fire spotting is a downwind-phenomenon, differences between fire propagation in the windward and in the leeward sectors are analyzed. In particular it emerges that the variability in time of the average ember jump-length and of the mean wind direction push fire advancement.
For the entire collection see [Zbl 1301.00067].

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
60H30 Applications of stochastic analysis (to PDEs, etc.)
80A25 Combustion

Software:

Multivac
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asensio, M. I.; Ferragut, L., On a wildland fire model with radiation, Int. J. Numer. Methods Eng., 54, 137-157 (2002) · Zbl 1098.76644
[2] Babak, P.; Bourlioux, A.; Hillen, T., The effect of wind on the propagation of an idealized forest fire, SIAM J. Appl. Math., 70, 1364-1388 (2009) · Zbl 1194.92070
[3] Balbi, J. H.; Morandini, F.; Silvani, X.; Filippi, J. B.; Rinieri, F., A physical model for wildland fires, Combust. Flame, 156, 2217-2230 (2009)
[4] Beezley, J. D.; Chakraborty, S.; Coen, J. L.; Douglas, C. C.; Mandel, J.; Vodacek, A.; Wang, Z.; Bubak, M.; van Albada, G. D.; Dongarra, J.; Sloot, P. A.M., Real-time data driven wildland fire modeling, Proceedings of ICCS 2008, Kraków, June 2008. Lecture Notes in Computer Science, 46-53 (2008), Heidelberg: Springer, Heidelberg
[5] Filippi, J. B.; Bosseur, F.; Mari, C.; Lac, C.; Lemoigne, P.; Cuneot, B.; Veynante, D.; Cariolle, D.; Balbi, J. H., Coupled atmosphere-wildland fire modelling, J. Adv. Model. Earth Syst., 1, 1-9 (2009)
[6] Finney, M., Fire growth using minimum travel time methods, Can. J. Forest Res., 32, 1420-1424 (2002)
[7] Finney, M., Calculation of fire spread rates across random landscapes, Int. J. Wildland Fire., 12, 167-174 (2003)
[8] Klimontovich, Yu. L., Nonlinear Brownian motion, Phys.-Usp., 37, 737-767 (1994)
[9] Mallet, V.; Keyes, D. E.; Fendell, F. E., Modeling wildland fire propagation with level set methods, Comput. Math. Appl., 57, 1089-1101 (2009) · Zbl 1186.65140
[10] Mandel, J.; Bennethum, L. S.; Beezley, J. D.; Coen, J. L.; Douglas, C. C.; Kim, M.; Vodacek, A., A wildland fire model with data assimilation, Math. Comput. Simul., 79, 584-606 (2008) · Zbl 1155.80005
[11] Mandel, J.; Beezley, J. D.; Coen, J. L.; Kim, M., Data assimilation for wildland fires: ensemble Kalman filters in coupled atmosphere-surface models, IEEE Contr. Syst. Mag., 29, 47-65 (2009) · Zbl 1395.62295
[12] Mandel, J.; Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model. Dev. 4, 591-610 (2011)
[13] Pagnini, G.; Bonomi, B., Lagrangian formulation of turbulent premixed combustion, Phys. Rev. Lett., 107, 044-503 (2011)
[14] Pagnini, G.; Massidda, L., The randomized level-set method to model turbulence effects in wildland fire propagation. In: Spano, D., Bacciu, V., Salis, M., Sirca, C. (eds.) Modelling Fire Behaviour and Risk, Conference on Fire Behaviour and Risk, Alghero, October 2011, Proceedings of ICFBR, 2011, 126-131 (2012)
[15] Pagnini, G.; Mentrelli, A., Modelling wildland fire propagation by tracking random fronts, Nat. Hazards Earth Syst. Sci., 14, 2249-2263 (2014)
[16] Perryman, H. A.; Dugaw, C. J.; Varner, J. M.; Johnson, D. L., A cellular automata model to link surface fires to firebrand lift-off and dispersal, Int. J. Wildland Fire., 22, 428-439 (2013)
[17] Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. Technical Report INT-115, USDA Forest Service (1972)
[18] Sardoy, N.; Consalvi, J. L.; Kaiss, A.; Fernandez-Pello, A. C.; Porterie, B., Numerical study of ground-level distribution of firebrands generated by line fires, Combust. Flame, 154, 478-488 (2008)
[19] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341-372 (2003) · Zbl 1041.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.