×

zbMATH — the first resource for mathematics

On global existence, energy decay and blow-up criteria for the Hall-MHD system. (English) Zbl 1328.35185
In this article the authors study the 3D incompressible Hall-Magnetohydrodynamics system. They show global existence of a unique solution in homogeneous Sobolev or Besov framework for small data together with various time decay properties of the solution. They also give two “Osgood type” blow-up criteria for local solutions on a finite interval \((0,T_*)\) when \(t\to T_*\) and they finally prove two Beale-Kato-Majda criteria for local solutions of a related model.

MSC:
35Q35 PDEs in connection with fluid mechanics
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acheritogaray, M.; Degond, P.; Frouvelle, A.; Liu, J.-G., Kinetic formulation and global existence for the Hall-magneto-hydrodynamics system, Kinet. Relat. Models, 4, 901-918, (2011) · Zbl 1251.35076
[2] Chae, D.; Degond, P.; Liu, J.-G., Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 555-565, (2014) · Zbl 1297.35064
[3] Chae, D.; Lee, J., On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256, 3835-3858, (2014) · Zbl 1295.35122
[4] Chae, D.; Schonbek, M., On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations, 255, 3971-3982, (2013) · Zbl 1291.35212
[5] Chae, D.; Wan, R.; Wu, J., Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion · Zbl 1327.35314
[6] Chae, D.; Weng, S., Singularity formation for the incompressible Hall-MHD equations without resistivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2015), in press · Zbl 1347.35199
[7] R. Wan, Global regularity for generalized Hall-MHD system, preprint.
[8] R. Wan, Y. Zhou, Low regularity well-posedness for the 3D generalized Hall-MHD system, preprint. · Zbl 1365.35219
[9] Benvenutti, M.; Ferreira, L., Existence and stability of global large strong solutions for the Hall-MHD system · Zbl 1389.35255
[10] Dumas, E.; Sueur, F., On the weak solutions to the Maxwell-Landau-Lifshitz equations and to the Hall-magnetohydrodynamic equations, Comm. Math. Phys., 330, 1179-1225, (2014) · Zbl 1294.35094
[11] Fan, J.; Huang, S.; Nakamura, G., Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations, Appl. Math. Lett., 26, 963-967, (2013) · Zbl 1315.35164
[12] Fan, J.; Ozawa, T., Regularity criteria for Hall-magnetohydrodynamics and the space-time monopole equation in Lorenz gauge, Contemp. Math., 612, 81-89, (2014) · Zbl 1297.35068
[13] Grafakos, L., Modern Fourier analysis, Grad. Texts in Math., vol. 250, (2008), Springer
[14] Bahouri, H.; Chemin, J.; Danchin, R., Fourier analysis and nonlinear partial differential equations, (2011), Springer · Zbl 1227.35004
[15] Majda, A.; Bertozzi, A., Vorticity and incompressible flow, (2001), Cambridge University Press Cambridge, UK
[16] Stein, E., Singular integrals and differentiability properties of functions, (1970), Princeton University Press Princeton · Zbl 0207.13501
[17] Schonbek, M., \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88, 209-222, (1985) · Zbl 0602.76031
[18] Schonbek, M., Large time behavior of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11, 733-763, (1986) · Zbl 0607.35071
[19] Danchin, R., Local theory in critical spaces for the compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26, 7-8, 1183-1233, (2001) · Zbl 1007.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.