×

zbMATH — the first resource for mathematics

Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion. (English) Zbl 1328.35173

MSC:
35Q35 PDEs in connection with fluid mechanics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D09 Viscous-inviscid interaction
35B65 Smoothness and regularity of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-1236(74)90027-5 · Zbl 0279.58005 · doi:10.1016/0022-1236(74)90027-5
[2] DOI: 10.1007/BFb0086903 · doi:10.1007/BFb0086903
[3] DOI: 10.1016/j.aim.2005.05.001 · Zbl 1100.35084 · doi:10.1016/j.aim.2005.05.001
[4] Evans L. C., Graduate Studies in Mathematics 19, in: Partial Differential Equations (1998)
[5] Hou T. Y., Discrete Contin. Dyn. Systems 12 pp 1– (2005)
[6] DOI: 10.1007/BF00251588 · Zbl 0166.45302 · doi:10.1007/BF00251588
[7] DOI: 10.1002/cpa.3160340405 · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[8] Ladyzhenskaya O. A., Linear and Quasilinear Equations of Parabolic Type (1968)
[9] DOI: 10.1007/s00205-010-0357-z · Zbl 1231.35171 · doi:10.1007/s00205-010-0357-z
[10] Lions P. L., Mathematical Topics in Fluid Mechanics 1 (1996) · Zbl 0866.76002
[11] Lions P. L., Mathematical Topics in Fluid Mechanics 2 (1998) · Zbl 0908.76004
[12] Lorca S. A., Mat. Contemp. 11 pp 71– (1996)
[13] DOI: 10.1016/S0362-546X(97)00635-4 · Zbl 0930.35136 · doi:10.1016/S0362-546X(97)00635-4
[14] DOI: 10.1090/cln/009 · doi:10.1090/cln/009
[15] Majda A., Cambridge Texts in Applied Mathematics 27, in: Vorticity and Incompressible Flow (2002)
[16] Morimoto H., J. Fac. Sci. Univ. Tokyo Sect. IA Math. 39 pp 61– (1992)
[17] DOI: 10.3792/pjaa.64.143 · Zbl 0682.35053 · doi:10.3792/pjaa.64.143
[18] DOI: 10.1007/978-1-4612-4650-3 · doi:10.1007/978-1-4612-4650-3
[19] DOI: 10.1016/j.jde.2013.04.032 · Zbl 1284.35322 · doi:10.1016/j.jde.2013.04.032
[20] Temam R., Studies in Mathematics and its Applications 2, in: Navier–Stokes Equations, Theory and Numerical Analysis (1977)
[21] DOI: 10.1016/j.aim.2011.05.008 · Zbl 1231.35180 · doi:10.1016/j.aim.2011.05.008
[22] DOI: 10.1307/mmj/1281531460 · Zbl 1205.35048 · doi:10.1307/mmj/1281531460
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.