×

zbMATH — the first resource for mathematics

Extremal bundles on Calabi-Yau threefolds. (English) Zbl 1328.14068
Motivated by considerations coming from string theory compactifications, the authors study extremal vector bundles on Calabi-Yau threefolds, i.e. stable \(\mathrm{SU}(n)\) bundles which satisfy the cancellation of the Green-Schwarz anomaly. More explicitly, a stable vector bundle \(V\) on a Calabi-Yau threefold \(X\) is called extremal if (1) \(c_1(V)=0\) and (2) \(c_2(TX)=c_2(V)\).
Most of the article takes an experimental point of view, using various databases of stable bundles on standard constructions of Calabi-Yau threefolds to determine the rarity of extremal bundles as well as bounds on their \(c_3(V)\). Section 3, however, is the theoretical core of the paper, where the authors first show that the spectral cover construction cannot produce extremal bundles on elliptic Calabi-Yau threefolds, which serve as the main testing ground for the authors’ investigation. The authors are thus lead to consider a different construction that generalizes the classical Hartshorne-Serre correspondence and gives locally free sheaves of any rank \(n\). The essential idea is to use semi-continuity and openness of stability to find stable bundles in the same deformation space as \(\mathcal O_X^{n-1}\oplus I_C\) for some smooth curve \(C\), but not obtained simply as a non-trivial extension, as these are not always even reflexive sheaves. In rank two, for example, they first consider a coherent sheaf obtained as an extension \[ 0\to\mathcal O_X\to\mathcal E_0\to I_C\to 0, \] where \(C\) is a smooth curve in \(X\) with \([C]=c_2(TX)\), just as in the classical Serre construction. They consider a seemingly unrelated second extension \[ 0\to\mathcal O_X(-D)\to\mathcal E_1\to \tilde{\mathcal F}\to 0, \] where \(D\) is an ample divisor not containing \(C\) and \(\tilde{\mathcal F}\) is a torsion-free extension in \(\mathrm{Ext}^1(\mathcal O_D,I_C)\). The crucial observation is that \(\mathcal E_0\) and \(\mathcal E_1\) can also be seen as representing linearly independent classes \(v_0,v_1\) in some other extension space, and by using semi-continuity, openness of stability, and the construction of \(\mathcal E_0,\mathcal E_1\), the authors are able to show that the generic member of the family of sheaves represented by \((1-t)v_0+tv_1,t\in\mathbb A^1\) is a stable bundle. The authors also consider which bundles of monad type on CICY’s (complete intersection Calabi-Yau’s) satisfy the conditions of being extremal.
In Section 4 of the article, the authors use the extremality conditions to translate the DRY conjecture, which gives sufficient conditions on topological invariants for the existence of a stable vector bundle with those invariants on a Calabi-Yau threefold \(X\), into a purely topological condition on \(X\). They then determine, for example, that all of the 7890 CICY’s satisfy this topological condition upon using extremal bundles of monad type, except for 37 self-mirror manifolds. The authors proceed similarly in Section 5 by studying the statistics of the bundles they consider with regard to extremality and the DRY conjecture. For extremal bundles, as an example, they plot the “difference” between \(\mathrm{ch}_2(V)\) and \(\mathrm{ch}_2(TX)\), appropriately defined as these represent 1-dimensional cycles, versus \(\mathrm{ch}_3(V)\) as \(X\) and \(V\) range over all possibilities in a given construction and rank. In this way, they obtain some interesting general trends for characteristic classes of known bundles.

MSC:
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
Software:
cohomCalg
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Donaldson, S.K., Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bunldles, Proc. Lond. Math. Soc., 50, 1, (1985) · Zbl 0529.53018
[2] Uhlenbeck, K.K.; Yau, S.-T., On the existence of Hermitian Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math., 39, 257, (1986) · Zbl 0615.58045
[3] Anderson, L.B., Gray, J., Lukas, A., Ovrut, B.: The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications. JHEP 1110, 032 (2011). arXiv:1107.5076 [hep-th] · Zbl 1303.81139
[4] Uhlenbeck, K.K.: Removable singularities in Yang-Mills fields. Comm. Math. Phys. 831, 11-29 (1982) · Zbl 0491.58032
[5] Uhlenbeck, K.K.: Connections with \(L\)\^{\(p\)} bounds on curvature. Comm. Math. Phys. 831, 31-42 (1982) · Zbl 0499.58019
[6] Li, J., Algebraic geometric interpretation of donaldson’s polynomial invariants, J. Differ. Geom., 37, 417-466, (1993) · Zbl 0809.14006
[7] Denef, F., Douglas, M.R.: Distributions of flux vacua. JHEP 0405, 072 (2004). hep-th/0404116
[8] Ashok, S., Douglas, M.R.: Counting flux vacua. JHEP 0401, 060 (2004). hep-th/0307049 · Zbl 1243.83060
[9] Douglas, M.R., Shiffman, B., Zelditch, S.: Critical points and supersymmetric vacua. Commun. Math. Phys. 252, 325 (2004). math/0402326 [math-cv] · Zbl 1103.32011
[10] Douglas, M.R., Shiffman, B., Zelditch, S.: Critical points and supersymmetric vacua. J. Diff. Geometry 252, 325 (2004). math/0406089 [math-cv] · Zbl 1103.32011
[11] Douglas, M.R., Shiffman, B., Zelditch, S.: Critical points and supersymmetric vacua II: asymptotics and extremal metrics. Commun. Math. Phys. 72, 381-427 (2006). math-ph/0506015 · Zbl 1236.32013
[12] Donaldson, S.K.; Thomas, R.P.; Huggett, S.A. (ed.); Mason, L.J. (ed.); Tod, K.P. (ed.); Tsou, S.T. (ed.); Woodhouse, N.M.J. (ed.), Gauge theory in higher dimensions, chapter 3, (1998), Oxford
[13] Thomas, R.P., A holomorphic Casson invariant for Calabi-Yau threefolds, and bundles on K3 fibrations, J. Differ. Geom., 54, 367-438, (2000) · Zbl 1034.14015
[14] Wu, B.: A degeneration formula of Donaldson-Thomas invariants, Thesis (Ph.D.) Stanford University 2007. In: Li, J., Wu, B. (eds.) Good degeneration of Quot-schemes and coherent systems. arXiv:1110.0390v1 [math.AG] · Zbl 0538.14006
[15] Witten, E.: Chern-Simons gauge theory as a string theory. Prog. Math. 133, 637-678. Boston, Birkhauser (1995). hep-th/9207094 · Zbl 0844.58018
[16] Kachru, S., Katz, S.H., Lawrence, A.E., McGreevy, J.: Open string instantons and superpotentials. Phys. Rev. D 62, 026001 (2000). hep-th/9912151
[17] Kachru, S, Katz, S.H., Lawrence, A.E., McGreevy, J.: Mirror symmetry for open strings. Phys. Rev. D 62, 126005 (2000). hep-th/0006047
[18] Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. hep-th/0012041
[19] Lazaroiu, C.I., Roiban, R.: Holomorphic potentials for graded D-branes. JHEP 0202, 038 (2002). hep-th/0110288
[20] Behrend, K., Bryan, J., Szendroi, B.: Motivic degree zero Donaldson-Thomas invariants. Invent. Math. 192(1), 111-160 (2013). arXiv:0909.5088 [math.AG] · Zbl 1267.14008
[21] Li, W.-P., Qin, Z.: Donaldson-Thomas invariants of certain Calabi-Yau 3-folds. arXiv:1002.4080 [math.AG] · Zbl 1277.32023
[22] DeWolfe, O., Giryavets, A., Kachru, S., Taylor, W.: Enumerating flux vacua with enhanced symmetries. JHEP 0502, 037 (2005). hep-th:0411061 · Zbl 0931.14022
[23] Denef, F., Douglas, M.R.: Computational complexity of the landscape I. Ann. Phys. 322, 1096 (2007). hep-th/0602072. In: Denef, F. (eds.) TASI lectures on complex structures. arXiv:1104.0254 [hep-th]
[24] Vakil, R., Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math., 164, 569-590, (2006) · Zbl 1095.14006
[25] The Oxford Handbook of Philosophy of Physics, chapter 8. In: Batternman, R. (ed.) Oxford University Press, Oxford, Mar 14, 2013. http://en.wikipedia.org/wiki/Totalitarian_principle
[26] Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 42(6), 1227-1287, 1439 (1978)
[27] Douglas, M.R., Reinbacher, R., Yau, S.-T.: Branes, bundles and attractors: Bogomolov Beyond. math/0604597 [math-ag]
[28] Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos. JHEP 1111:129 (2011) hep-th/0702146 · Zbl 1306.81213
[29] He, Y.-H., Candelas, P., Hanany, A., Lukas, A., Ovrut, B.: (eds.) Computational Algebraic Geometry in String, Gauge Theory. Special Issue, Advances in High Energy Physics, Hindawi publishing (2012). doi:10.1155/2012/431898 · Zbl 0495.14009
[30] He, Y.-H.: Calabi-Yau geometries: algorithms, databases, and physics. Int. J. Mod. Phys. A 28 (2013) arXiv:1308.0186 [hep-th] · Zbl 1264.32020
[31] Candelas, P.; Dale, A.M.; Lutken, C.A.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys. B, 298, 493, (1988)
[32] Gagnon, M.; Ho-Kim, Q., An exhaustive List of complete intersection Calabi-Yau manifolds, Mod. Phys. Lett. A, 9, 2235, (1994) · Zbl 1020.14501
[33] Avram, A.C., Kreuzer, M., Mandelberg, M., Skarke, H.: The web of Calabi-Yau hypersurfaces in toric varieties. Nucl. Phys. B 505, 625 (1997). hep-th/9703003 · Zbl 0896.14026
[34] Anderson, L.B., Gray, J., Lukas, A., Palti, E.: Heterotic Line Bundle Standard Models. JHEP 1206, 113 (2012). arXiv:1202.1757 [hep-th] · Zbl 1122.35145
[35] Anderson, L.B., Constantin, A., Gray, J., Lukas, A., Palti, E.: JHEP 1401, 047 (2014). arXiv:1307.4787 [hep-th] · Zbl 1231.53025
[36] Anderson, L.B., Constantin, A., Gray, J., Lukas, A., Palti, E.: A comprehensive scan for heterotic SU(5) GUT models. JHEP 1401, 047 (2014). arXiv:1307.4787 [hep-th] · Zbl 0793.14030
[37] Donagi, R., He, Y.-H., Ovrut, B.A., Reinbacher, R.: The particle spectrum of heterotic compactifications. JHEP 0412, 054 (2004). arXiv:hep-th/0405014 · Zbl 1247.14044
[38] Gabella, M., He, Y.-H., Lukas, A.: An abundance of heterotic vacua. JHEP 0812, 027 (2008). arXiv:0808.2142 [hep-th] · Zbl 1329.81313
[39] Anderson, L.B., He, Y.-H., Lukas, A.: Heterotic compactification, an algorithmic approach. JHEP 0707, 049 (2007). hep-th/0702210
[40] Anderson, L.B., He, Y.-H., Lukas, A.: Monad bundles in heterotic string compactifications. JHEP 0807, 104 (2008). arXiv:0805.2875 [hep-th]
[41] Anderson, L.B., Gray, J., He, Y.-H., Lukas, A.: JHEP 1002, 054 (2010). arXiv:0911.1569 [hep-th]
[42] He, Y.-H., Kreuzer, M., Lee, S.-J., Lukas, A.: Heterotic bundles on Calabi-Yau manifolds with small Picard number. JHEP 1112, 039 (2011). arXiv:1108.1031 [hep-th] · Zbl 1306.81246
[43] Blumenhagen, R., Jurke, B., Rahn, T.: Computational tools for cohomology of toric varieties. Adv. High Energy Phys. 2011, 152749 (2011). arXiv:1104.1187 [hep-th] · Zbl 1234.81107
[44] Gao, X., Shukla, P.: On classifying the divisor involutions in Calabi-Yau threefolds. JHEP 1311, 170 (2013). arXiv:1307.1139 [hep-th] · Zbl 1342.81425
[45] Strominger, A., Superstrings with torsion, Nucl. Phys. B, 274, 253, (1986)
[46] Fu, J.X.; Yau, S.T., A Monge-Ampère-type equation motivated by string theory, Comm. Anal. Geom., 15, 29-75, (2007) · Zbl 1122.35145
[47] Fu, J.X.; Yau, S.T., The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation, J. Differ. Geom., 78, 369-428, (2008) · Zbl 1141.53036
[48] Fu, J.X.; Yau, S.T., A note on small deformations of balanced manifolds, C. R. Math. Acad. Sci. Paris, 349, 793-796, (2011) · Zbl 1231.53025
[49] Fu, J.; Li, J.; Yau, S.T., Balanced metrics on non-Kähler Calabi-Yau threefolds, J. Differ. Geom., 90, 81-129, (2012) · Zbl 1264.32020
[50] Douglas, M.R., Zhou, C.-G.: Chirality change in string theory. JHEP 0406, 014 (2004). hep-th/0403018
[51] Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E., Vacuum configurations for superstrings, Nucl. Phys. B, 258, 46, (1985)
[52] Green M.B., Schwarz J.H., Witten E.: Superstring Theory. Cambridge University Press, Cambridge (1987) · Zbl 0619.53002
[53] Horava, P., Witten, E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94 (1996). hep-th/9603142 · Zbl 0925.81180
[54] Lukas, A., Ovrut, B.A. Stelle, K.S., Waldram, D.: Heterotic M theory in five-dimensions. Nucl. Phys. B 552, 246 (1999). hep-th/9806051 · Zbl 0958.81117
[55] Greene, B.R.; Kirklin, K.H.; Miron, P.J.; Ross, G.G., A three generation superstring model 1: compactification and discrete symmetries, Nucl. Phys. B, 278, 667, (1986)
[56] Braun, V., He, Y.-H., Ovrut, B.A., Pantev, T.: The Exact MSSM spectrum from string theory. JHEP 0605, 043 (2006). hep-th/0512177 · Zbl 0809.14006
[57] Bouchard, V., Donagi, R.: An SU(5) heterotic standard model. Phys. Lett. B 633, 783 (2006). hep-th/0512149 · Zbl 1247.81348
[58] Candelas, P., de la Ossa, X. He, Y.-H., Szendroi, B.: Triadophilia: a special corner in the landscape. Adv. Theor. Math. Phys. 12, 429 (2008). arXiv:0706.3134 [hep-th] · Zbl 1144.81499
[59] Braun, V., Candelas, P., Davies, R.: A three-generation Calabi-Yau manifold with small hodge numbers. Fortsch. Phys. 58, 467 (2010). arXiv:0910.5464 [hep-th]
[60] Kollár, J.; Matsusaka, T., Riemann-Roch type inequalities, Am. J. Math., 105, 229-252, (1983) · Zbl 0538.14006
[61] Maruyama, M., On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ., 21, 673-701, (1981) · Zbl 0495.14009
[62] Simpson, C.T., Moduli of representations of the fundamental group of a smooth projective variety. I. inst, Hautes Études Sci. Publ. Math. No., 79, 47-129, (1994) · Zbl 0891.14005
[63] Taylor, W.: On the Hodge structure of elliptically fibered Calabi-Yau threefolds. JHEP 1208, 032 (2012). arXiv:1205.0952 [hep-th] · Zbl 1397.14048
[64] Anderson, L.B., Gray, J., Ovrut, B.A.: Transitions in the web of heterotic vacua. Fortsch. Phys. 59, 327 (2011). arXiv:1012.3179 [hep-th] · Zbl 1215.81076
[65] Donagi, R.: Principal bundles on elliptic brations. Asian J. Math. 1, 214-223 (June 1997). Friedman, R., Morgan, J.W., Witten, E.: Vector Bundles Over Elliptic Fibrations. arXiv:alg-geom/9709029 · Zbl 1102.53052
[66] Morrison, D.R., Vafa, C.: Compactifications of F theory on Calabi-Yau threefolds 1. Nucl. Phys. B 473, 74 (1996). hep-th/9602114 · Zbl 0925.14005
[67] Langer, A., Semistable sheaves in positive characteristic, Ann. Math. (2), 159, 251-276, (2004) · Zbl 1080.14014
[68] Kawamata, Y., On the cone of divisors of Calabi-Yau fiber spaces, Int. J. Math., 8, 665-687, (1997) · Zbl 0931.14022
[69] Hartshorne, R., Stable reflexive sheaves, Math. Ann., 254, 121-176, (1980) · Zbl 0431.14004
[70] Wu, B., Yau, S.T.: A construction of stable bundles and reflexive sheaves on Calabi-Yau threefolds. arXiv:1405.5676
[71] Okonek C., Schneider M., Spindler H.: Vector bundles on complex projective spaces. Progress in Mathematics, vol. 3. Birkhauser, Boston (1980) · Zbl 1237.14003
[72] Yau, S.T., Calabis conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci., 74, 1789, (1977) · Zbl 0355.32028
[73] Yau, S.T., On the Ricci curvature of a compact Kähler manifold and the complex mongeampere equations. I. comm, Pure Appl. Math., 31, 339-411, (1978) · Zbl 0369.53059
[74] Wu B.: private correspondence · Zbl 0162.27305
[75] Maeda, H., Construction of vector bundles and reflexive sheaves, Tokyo J. Math., 13, 153-162, (1990) · Zbl 0731.14004
[76] Li, J.; Yau, S.T., The existence of supersymmetric string theory with torsion, J. Differ. Geom., 70, 143-181, (2005) · Zbl 1102.53052
[77] Huybrechts, D., The tangent bundle of a Calabi-Yau manifolddeformations and restriction to rational curves, Comm. Math. Phys., 171, 139-158, (1995) · Zbl 0852.14011
[78] Maruyama, M.: On a family of algebraic vector bundles, Number Theory. Algebraic Geometry and Commutative Algebra (1973), 95-149, Kinokuniya. MR0360587 (50:13035)
[79] Horrocks, G., A construction for locally free sheaves, Topology, 7, 117-120, (1968) · Zbl 0162.27305
[80] Barth, W.; Hulek, K., Monads and moduli of vector bundles, Manuscripta Math., 25, 323-347, (1978) · Zbl 0395.14007
[81] Distler, J.; Greene, B.R., Aspects of (2,0) string compactifications, Nucl. Phys. B, 304, 1, (1988)
[82] Braun, V.: Three Generations on the Quintic Quotient. JHEP 1001, 094 (2010). arXiv:0909.5682 [hep-th] · Zbl 1269.81109
[83] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory I. Compos. Math. 1425, 1263-1285 (2006) · Zbl 1108.14046
[84] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory. II Compos. Math. 1425, 1286-1304 (2006) · Zbl 1108.14047
[85] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten/Donaldson-Thomas correspondence for toric threefolds. Invent. Math. 1862, 435-479 (2011) · Zbl 1232.14039
[86] Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants. In: Proceedings of Memoils of the American Mathematical Society. vol. 2A, no. 1020, AMS, Providence (2011). arXiv:0810.5645 [math.AG] · Zbl 1259.14054
[87] Kontsevich, M., Soibelman, Y.: Motivic Donaldson-Thomas invariants: summary of results. in Contemporary Math. 527 (2010). arXiv:0910.4315 · Zbl 1214.14014
[88] Andreas, B., Curio, G.: On possible Chern classes of stable bundles on Calabi-Yau threefolds. J. Geom. Phys. 61, 1378 (2011). arXiv:1010.1644 [hep-th] · Zbl 1242.32013
[89] Andreas, B., Curio, G.: On the Existence of Stable bundles with prescribed Chern classes on Calabi-Yau threefolds. J. Geom. Phys. 76, 235-241 (2014). arXiv:1104.3435 [math.AG] · Zbl 1281.14037
[90] Oguiso, K., On algebraic fiber space structures on a Calabi-Yau threefold, Int. J. Math., 4, 439-465, (1993) · Zbl 0793.14030
[91] Wilson, P.M.H., The existence of elliptic fibre space structures on Calabi-Yau threefolds, Math. Ann., 300, 693-703, (1994) · Zbl 0819.14015
[92] Wu, B., Yau, S.T.: A Construction of stable bundles and reflexive sheaves on Calabi-Yau threefolds. arXiv:1405.5676 [math.AG]
[93] Marino, M., Moore, G.W., Peradze, G.: Superconformal invariance and the geography of four manifolds. Commun. Math. Phys. 205, 691 (1999). hep-th/9812055 · Zbl 0988.57019
[94] Buchbinder, E., Donagi, R., Ovrut, B.A.: Vector bundle moduli and small instanton transitions. JHEP 0206, 054 (2002). hep-th/0202084
[95] Friedman, R., Morgan, J.W., Witten, E.: Vector bundles over elliptic fibrations. alg-geom/9709029 · Zbl 0937.14004
[96] Friedman, R., Morgan, J., Witten, E.: Commun. Math. Phys. 187, 679 (1997). hep-th/9701162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.