×

zbMATH — the first resource for mathematics

Numerical approximations of fractional derivatives with applications. (English) Zbl 1327.93165
Summary: Two approximations, derived from continuous expansions of Riemann-Liouville fractional derivatives into series involving integer order derivatives, are studied. Using those series, one can formally transform any problem that contains fractional derivatives into a classical problem in which only derivatives of integer order are present. Corresponding approximations provide useful numerical tools to compute fractional derivatives of functions. Application of such approximations to fractional differential equations and fractional problems of the calculus of variations are discussed. Illustrative examples show the advantages and disadvantages of each approximation.

MSC:
93B40 Computational methods in systems theory (MSC2010)
34A08 Fractional ordinary differential equations and fractional differential inclusions
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Almeida, Leitmann’s direct method for fractional optimization problems, Appl. Math. Comput. 217 (3) pp 956– (2010) · Zbl 1200.65049 · doi:10.1016/j.amc.2010.03.085
[2] Andrews, Special functions (1999) · doi:10.1017/CBO9781107325937
[3] Aoun, Numerical simulations of fractional systems: An overview of existing methods and improvements, Nonlinear Dyn. 38 (1-4) pp 117– (2004) · Zbl 1134.65300 · doi:10.1007/s11071-004-3750-z
[4] Atanacković, Generalized Hamilton’s principle with fractional derivatives, J. Phys. A-Math. Theor. 43 (25) pp 12– (2010) · Zbl 1379.70052 · doi:10.1088/1751-8113/43/25/255203
[5] Atanacković, Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A-Math. Theor. 41 (9) pp 12– (2008) · Zbl 1175.49020 · doi:10.1088/1751-8113/41/9/095201
[6] Atanackovic, An expansion formula for fractional derivatives and its application, Fract. Calc. Appl. Anal. 7 (3) pp 365– (2004) · Zbl 1128.26003
[7] Atanacković, On a numerical scheme for solving differential equations of fractional order, Mech. Res. Commun. 35 (7) pp 429– (2008) · Zbl 1258.65103 · doi:10.1016/j.mechrescom.2008.05.003
[8] Das, Functional fractional calculus for system identification and controls (2008) · Zbl 1154.26007
[9] Diethelm, The analysis of fractional differential equations (2010) · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[10] Diethelm, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (1-4) pp 3– (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[11] Djordjevic, Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-de Vries fractional equations, J. Comput. Appl. Math. 222 (2) pp 701– (2008) · Zbl 1157.35470 · doi:10.1016/j.cam.2007.12.013
[12] Ö Efe, Battery power loss compensated fractional order sliding mode control of a quadrotor UAV, Asian J. Control 14 (2) pp 413– (2012) · Zbl 1286.93044 · doi:10.1002/asjc.340
[13] Ford, Comparison of numerical methods for fractional differential equations, Commun. Pure Appl. Anal. 5 (2) pp 289– (2006) · Zbl 1133.65115 · doi:10.3934/cpaa.2006.5.289
[14] Frederico, Fractional conservation laws in optimal control theory, Nonlinear Dyn. 53 (3) pp 215– (2008) · Zbl 1170.49017 · doi:10.1007/s11071-007-9309-z
[15] Jelicic, Optimality conditions and a solution scheme for fractional optimal control problems, Struct. Multidiscip. Optim. 38 (6) pp 571– (2009) · Zbl 1274.49035 · doi:10.1007/s00158-008-0307-7
[16] Kilbas, Theory and applications of fractional differential equations (2006) · Zbl 1138.26300
[17] Kumar, An approximate method for numerical solution of fractional differential equations, Signal Process. 86 pp 2602– (2006) · Zbl 1172.94436 · doi:10.1016/j.sigpro.2006.02.007
[18] Lebedev, The calculus of variations and functional analysis (2003) · doi:10.1142/5374
[19] Li, Fractional-order iterative learning control for fractional-order linear systems, Asian J. Control 13 (1) pp 54– (2011) · Zbl 1248.93085 · doi:10.1002/asjc.253
[20] Malinowska, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl. 59 (9) pp 3110– (2010) · Zbl 1193.49023 · doi:10.1016/j.camwa.2010.02.032
[21] Mozyrska, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Process. 91 (3) pp 379– (2011) · Zbl 1203.94046 · doi:10.1016/j.sigpro.2010.07.016
[22] Odzijewicz, Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. 75 (3) pp 1507– (2012) · Zbl 1236.49043 · doi:10.1016/j.na.2011.01.010
[23] Odzijewicz, Calculus of variations with classical and fractional derivatives Math. Balkanica 26 (1-2) pp 191– (2012)
[24] Podlubny, Fractional differential equations (1999)
[25] Pontryagin, The mathematical theory of optimal processes (1962) · Zbl 0112.05502
[26] Pooseh, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative, Numer. Funct. Anal. Optim. 33 (3) pp 301– (2012) · Zbl 1248.26013 · doi:10.1080/01630563.2011.647197
[27] Pooseh, Approximation of fractional integrals by means of derivatives, Comput. Math. Appl. (2012) · Zbl 1268.41024 · doi:10.1016/j.camwa.2012.01.068
[28] Samko, Fractional integrals and derivatives (1993)
[29] Shen, Necessary and sufficient conditions for consensus of delayed fractional-order systems, Asian J. Control (2012) · Zbl 1303.93017 · doi:10.1002/asjc.492
[30] Stoer, Introduction to numerical analysis (2002) · Zbl 1004.65001 · doi:10.1007/978-0-387-21738-3
[31] Sun, Convergence speed of a fractional order consensus algorithm over undirected scale-free networks, Asian J. Control 13 (6) pp 936– (2011) · Zbl 1263.93013 · doi:10.1002/asjc.390
[32] Tenreiro Machado, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (3) pp 1140– (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[33] Tenreiro Machado, Some applications of fractional calculus in engineering, Math. Probl. Eng. pp 34– (2010) · Zbl 1191.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.