×

zbMATH — the first resource for mathematics

Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. (English) Zbl 1327.76078
Summary: Understanding the non-local pressure contributions and viscous effects on the small-scale statistics remains one of the central challenges in the study of homogeneous isotropic turbulence. Here we address this issue by studying the impact of the pressure Hessian as well as viscous diffusion on the statistics of the velocity gradient tensor in the framework of an exact statistical evolution equation. This evolution equation shares similarities with earlier phenomenological models for the Lagrangian velocity gradient tensor evolution, yet constitutes the starting point for a systematic study of the unclosed pressure Hessian and viscous diffusion terms. Based on the assumption of incompressible Gaussian velocity fields, closed expressions are obtained as the results of an evaluation of the characteristic functionals. The benefits and shortcomings of this Gaussian closure are discussed, and a generalization is proposed based on results from direct numerical simulations. This enhanced Gaussian closure yields, for example, insights on how the pressure Hessian prevents the finite-time singularity induced by the local self-amplification and how its interaction with viscous effects leads to the characteristic strain skewness phenomenon.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76F02 Fundamentals of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.2936312 · Zbl 1182.76513 · doi:10.1063/1.2936312
[2] DOI: 10.1103/PhysRevE.72.056318 · doi:10.1103/PhysRevE.72.056318
[3] DOI: 10.1017/jfm.2011.39 · Zbl 1241.76244 · doi:10.1017/jfm.2011.39
[4] DOI: 10.1016/0378-4371(84)90008-6 · Zbl 0599.76040 · doi:10.1016/0378-4371(84)90008-6
[5] DOI: 10.1051/jphys:01982004306083700 · doi:10.1051/jphys:01982004306083700
[6] DOI: 10.1063/1.869717 · Zbl 1185.76768 · doi:10.1063/1.869717
[7] DOI: 10.1017/S0022112009991947 · Zbl 1183.76787 · doi:10.1017/S0022112009991947
[8] DOI: 10.1063/1.1762249 · doi:10.1063/1.1762249
[9] Frisch, Turbulence: The Legacy of A.N. Kolmogorov (1995) · Zbl 0832.76001
[10] DOI: 10.1063/1.868440 · Zbl 0825.76359 · doi:10.1063/1.868440
[11] DOI: 10.1016/j.crhy.2012.09.009 · doi:10.1016/j.crhy.2012.09.009
[12] Li, J. Turbul. (2008)
[13] Dopazo, Turbulent Reacting Flows II (1994)
[14] DOI: 10.1007/s00162-002-0084-7 · Zbl 1068.76522 · doi:10.1007/s00162-002-0084-7
[15] Monin, Statistical Fluid Mechanics: Mechanics of Turbulence 2 (2007) · Zbl 1140.76004
[16] DOI: 10.1063/1.3005832 · Zbl 1182.76149 · doi:10.1063/1.3005832
[17] DOI: 10.1017/S0022112007008531 · Zbl 1151.76515 · doi:10.1017/S0022112007008531
[18] DOI: 10.1063/1.858765 · Zbl 0797.76076 · doi:10.1063/1.858765
[19] DOI: 10.1103/PhysRevLett.97.174501 · doi:10.1103/PhysRevLett.97.174501
[20] DOI: 10.1007/978-3-662-10184-1 · doi:10.1007/978-3-662-10184-1
[21] DOI: 10.1063/1.870101 · Zbl 1147.76360 · doi:10.1063/1.870101
[22] DOI: 10.1063/1.857773 · Zbl 0697.76071 · doi:10.1063/1.857773
[23] DOI: 10.1063/1.858295 · Zbl 0754.76004 · doi:10.1063/1.858295
[24] DOI: 10.1017/S0022112056000317 · Zbl 0071.40603 · doi:10.1017/S0022112056000317
[25] DOI: 10.1063/1.866513 · doi:10.1063/1.866513
[26] DOI: 10.1007/978-90-481-3174-7 · Zbl 1177.76001 · doi:10.1007/978-90-481-3174-7
[27] DOI: 10.1016/S0997-7546(98)80003-4 · Zbl 0932.76029 · doi:10.1016/S0997-7546(98)80003-4
[28] DOI: 10.1017/S0022112093000382 · Zbl 0825.76273 · doi:10.1017/S0022112093000382
[29] DOI: 10.1017/CBO9780511840531 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[30] DOI: 10.1063/1.868638 · Zbl 0839.76011 · doi:10.1063/1.868638
[31] DOI: 10.1017/S0022112098003024 · Zbl 0933.76035 · doi:10.1017/S0022112098003024
[32] DOI: 10.1146/annurev-fluid-122109-160708 · Zbl 1299.76088 · doi:10.1146/annurev-fluid-122109-160708
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.