×

Dielectric elastomer composites: a general closed-form solution in the small-deformation limit. (English) Zbl 1327.74030

Summary: A solution for the overall electromechanical response of two-phase dielectric elastomer composites with (random or periodic) particulate microstructures is derived in the classical limit of small deformations and moderate electric fields. In this limit, the overall electromechanical response is characterized by three effective tensors: a fourth-order tensor describing the elasticity of the material, a second-order tensor describing its permittivity, and a fourth-order tensor describing its electrostrictive response. Closed-form formulas are derived for these effective tensors directly in terms of the corresponding tensors describing the electromechanical response of the underlying matrix and the particles, and the one- and two-point correlation functions describing the microstructure. This is accomplished by specializing a new iterative homogenization theory in finite electroelastostatics to the case of elastic dielectrics with even coupling between the mechanical and electric fields and, subsequently, carrying out the pertinent asymptotic analysis.
Additionally, with the aim of gaining physical insight into the proposed solution and shedding light on recently reported experiments, specific results are examined and compared with an available analytical solution and with new full-field simulations for the special case of dielectric elastomers filled with isotropic distributions of spherical particles with various elastic dielectric properties, including stiff high-permittivity particles, liquid-like high-permittivity particles, and vacuous pores.

MSC:

74B15 Equations linearized about a deformed state (small deformations superposed on large)
82D60 Statistical mechanics of polymers
74F15 Electromagnetic effects in solid mechanics
74Qxx Homogenization, determination of effective properties in solid mechanics

Software:

Netgen; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Avellaneda, M., Iterated homogenization, differential effective medium theory and applications, Commun. Pure Appl. Math., 40, 527-554 (1987) · Zbl 0629.73010
[2] Bergman, D. J., The dielectric constant of a composite material-a problem in classical physics, Phys. Rep., 43C, 377-407 (1978)
[3] Carpi, F.; de Rossi, D., Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder, IEEE Trans. Dielectr. Electr. Insul., 12, 835-843 (2005)
[5] Dorfmann, A.; Ogden, R. W., Nonlinear electroelasticity, Acta Mech., 174, 167-183 (2005) · Zbl 1066.74024
[7] Fassler, A.; Majidi, C., Liquid-phase metal inclusions for a conductive polymer composite, Adv. Mater., 27, 1928-1932 (2015)
[9] Gusev, A. A., Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, 45, 1449-1459 (1997) · Zbl 0977.74512
[10] Hashin, Z.; Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10, 335-342 (1962) · Zbl 0111.41401
[11] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125-3131 (1962) · Zbl 0111.41401
[12] Huang, C.; Zhang, Q. M., Enhanced dielectric and electromechanical response in high-dielectric constant all-polymer percolative composites, Adv. Funct. Mater., 14, 501-506 (2004)
[13] Huang, C.; Zhang, Q. M.; Li, J. Y.; Rabeony, M., Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites, Appl. Phys. Lett., 87, 182901 (2005)
[14] Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R., Actuation response of polyacrylate dielectric elastomers, J. Intell. Mater. Syst. Struct., 14, 787-793 (2003)
[15] Lefèvre, V.; Lopez-Pamies, O., The overall elastic dielectric properties of a suspension of spherical particles in rubberan exact explicit solution in the small-deformation limit, J. Appl. Phys., 116, 134106 (2014)
[16] Lewis, T. J., Interfaces are the dominant feature of dielectrics at the nanometric level, IEEE Trans. Dielectr. Electr. Insul., 11, 739-753 (2004)
[17] Li, J. Y.; Rao, N., Micromechanics of ferroelectric polymer-based electrostrictive composites, J. Mech. Phys. Solids, 52, 591-615 (2004) · Zbl 1106.74347
[18] Li, J. Y.; Huang, C.; Zhang, Q., Enhanced electromechanical properties in all-polymer percolative composites, Appl. Phys. Lett., 84, 3124 (2004)
[19] Liu, H.; Zhang, L.; Yang, D.; Yu, Y.; Yao, L.; Tian, M., Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of \(TiO_2\), Soft Mater., 11, 363-370 (2013)
[21] Lopez-Pamies, O., Elastic dielectric composites: theory and application to particle-filled ideal dielectrics, J. Mech. Phys. Solids, 64, 61-82 (2014)
[22] Lopez-Pamies, O.; Goudarzi, T.; Nakamura, T., The nonlinear elastic response of suspensions of rigid inclusions in rubberI—an exact result for dilute suspensions, J. Mech. Phys. Solids, 61, 1-18 (2013) · Zbl 1258.74017
[23] Lopez-Pamies, O.; Goudarzi, T.; Nakamura, T., The nonlinear elastic response of suspensions of rigid inclusions in rubberII—a simple explicit approximation for finite-concentration suspensions, J. Mech. Phys. Solids, 61, 19-37 (2013) · Zbl 1258.74016
[24] Lopez-Pamies, O.; Goudarzi, T.; Meddeb, A. B.; Ounaies, Z., Extreme enhancement and reduction of the dielectric response of polymer nanoparticulate composites via interphasial charges, Appl. Phys. Lett., 104, 24290 (2014)
[26] Mc Carthy, D. N.; Risse, S.; Katekomol, P.; Kofod, G., The effect of dispersion on the increased relative permittivity of \(TiO_2\)/SEBS composites, J. Phys. D: Appl. Phys., 42, 145406 (2009)
[27] Michel, J. C.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructurea computational approach, Comput. Methods Appl. Mech. Eng., 172, 109-143 (1999) · Zbl 0964.74054
[28] Milton, G. W., The theory of composites, Cambridge Monographs on Applied and Computational Mathematics, 6 (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0631.73011
[29] Roy, M.; Nelson, J. K.; MacCrone, R. K.; Schadler, L. S.; Reed, C. W.; Keefe, R.; Zenger, W., Polymer nanocomposite dielectrics—the role of the interface, IEEE Trans. Dielectr. Electr. Insul., 12, 629-643 (2005)
[30] Schöberl, J., Netgen an advancing front 2d/3d-mesh generator based on abstract rules, Comput. Vis. Sci., 1, 41-52 (1997) · Zbl 0883.68130
[31] Segurado, J.; Llorca, J., A numerical approximation to the elastic properties of sphere-reinforced composites, J. Mech. Phys. Solids, 50, 2107-2121 (2002) · Zbl 1151.74335
[32] Siboni, M. H.; Ponte Castañeda, P., Dielectric elastomer composites: small-deformation theory and applications, Philos. Mag., 93, 2769-2801 (2013)
[33] Spinelli, S. A.; Lopez-Pamies, O., A general closed-form solution for the overall response of piezoelectric composites with periodic and random particulate microstructures, Int. J. Solids Struct., 51, 2979-2989 (2014)
[35] Suo, Z.; Zhao, X.; Greene, W. H., A nonlinear field theory of deformable dielectrics, J. Mech. Phys. Solids, 56, 467-486 (2008) · Zbl 1171.74345
[37] Tian, L.; Tevet-Deree, L.; deBotton, G.; Bhattacharya, K., Dielectric elastomer composites, J. Mech. Phys. Solids, 60, 181-198 (2012) · Zbl 1244.74014
[38] Toupin, R. A., The elastic dielectric, J. Ration. Mech. Anal., 5, 849-915 (1956) · Zbl 0072.23803
[39] Wang, Q.; Suo, Z.; Zhao, X., Bursting drops in solid dielectrics caused by high voltages, Nat. Commun., 3, 1157 (2012)
[40] Willis, J. R., Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, 25, 185-202 (1977) · Zbl 0363.73014
[41] Wissler, M.; Mazza, E., Electromechanical coupling in dielectric elastomer actuators, Sens. Actuators A, 138, 384-393 (2007)
[42] Zhang, Q. M.; Hengfeng, L.; Poh, M.; Xia, F.; Cheng, Z.-Y.; Xu, H.; Huang, C., An all-organic composite actuator material with high dielectric constant, Nature, 419, 284-287 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.