×

Synchronization of systems with fractional environmental noises on finite lattice. (English) Zbl 1327.60117

Summary: This paper is devoted to the study of synchronous phenomena of the solutions to systems driven by fractional environmental noises on finite lattices. Under certain dissipative and integrability conditions, we obtain the synchronization between two solutions, and among different components of solutions when the coupling coefficient tends to infinity. This indicates that no matter how large the intensity and what kinds of the noises perturb the system, the synchronization persists.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G22 Fractional processes, including fractional Brownian motion
34F05 Ordinary differential equations and systems with randomness
37H10 Generation, random and stochastic difference and differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. Afraimovich, S. Chow, J. Hale, Synchronization in lattices of coupled oscillators. Physica D 103 (1997), 442-451.; · Zbl 1194.34056
[2] V. Afraimovich, W. Lin, Synchronization in lattices of coupled oscillators with Neumann/periodic boundary conditions. Dyn. Stability Syst. 13 (1998), 237-264.; · Zbl 1067.34052
[3] V. Afraimovich, H. Rodrigues, Uniform dissipativeness and synchronization of nonautonomous equation. In: Int. Conf. on Differential Equations, World Scientific, New York (1998), 3-17.; · Zbl 0964.34040
[4] V. Afraimovich, N. Verichev, M. Rabinovich, Stochastic synchronization of oscillations in dissipative systems. Izv. Vys. Uch. Zav., Radiofizika 29 (1986), 1050-1060.;
[5] L. Arnold, Random Dynamical Systems. Springer-Verlag, Berlin (1998).; · Zbl 0906.34001
[6] F. Biagini et al., Stochastic Calculus for Fractional Brownian Motion and Applications. Springer-Verlag, London (2008).; · Zbl 1157.60002
[7] T. Caraballo, I. Chueshov, P. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain. SIAM Journal Math. Anal. 38 (2007), 1489-1507.; · Zbl 1125.37058
[8] T. Caraballo, P. Kloeden, The persistence of synchronization under environmental noise. Proc. Roy. Soc. London A 461 (2005), 2257-2267.; · Zbl 1206.60054
[9] T. Caraballo, P. Kloeden, A. Neuenkirch, Synchronization of systems with multiplicative noise. Stoch. Dyn. 8 (2008), 139-154.; · Zbl 1149.60036
[10] A. Carvalho, H. Rodrigues, T. Dlotko, Upper semicontinuity of attractors and synchronization. J. Math. Anal. Appl. 220 (1998), 13-41.; · Zbl 0907.34039
[11] I. Chueshov, B. Schmalfus, Master-slave synchronization and invariant manifolds for coupled stochastic systems. J. Math. Phys. 51 (2010), 1-23.; · Zbl 1314.34116
[12] M. Garrido-Atienza, P. Kloeden, A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by a fractional Brownian motion. Appl. Math. Optim. 60 (2009), 151-172.; · Zbl 1180.93095
[13] M. Garrido-Atienza, K. Lu, B. Schmalfus, Random dynamical systems for stochastic equations driven by a fractional Brownian motion. Discrete Contin. Dyn. Syst. 14 (2010), 473-493.; · Zbl 1200.37075
[14] M. Garrido-Atienza, B. Maslowski, B. Schmalfus, Random attractors for stochastic equations driven by a fractional Brownian motion. Internat. J. Bifur. Chaos 20 (2010), 2761-2782.; · Zbl 1202.37073
[15] M. Garrido-Atienza and B. Schmalfus, Ergodicity of the infinite dimensional fractional Brownian motion. J. Dyn. Diff. Equat. 23 (2011), 671-681.; · Zbl 1228.37004
[16] L. Glass, Synchronization and rhythmic processes in physiology. Nature 410 (2001), 277-284.;
[17] A. Gu, Synchronization of coupled stochastic systems diven by non- Gaussian L´evy noises. Math. Probl. Eng. 2013 (2013), 1-10.;
[18] A. Gu, Random attractor of stochastic lattice dynamical systems driven by fractional Brownian motions. Internat. J. Bifur. Chaos 23 (2013), 1-9.; · Zbl 1270.37040
[19] P. Kloeden, Synchronization of nonautonomous dynamical systems. Electr. J. Diff. Eqns. 39 (2003), 1-10.; · Zbl 1038.37021
[20] H. Kunita, Stochastic Flow and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990).; · Zbl 0743.60052
[21] X. Liu, J. Duan, J. Liu, P. Kloeden, Synchronization of dissipative dynamical systems driven by non-Gaussian L´evy noises. Internat. Journal of Stochastic Anal. 502803 (2010), 1-13.; · Zbl 1218.60051
[22] X. Liu, J. Duan, J. Liu, P. Kloeden, Synchronization of systems of Marcus canonical equations driven by α-stable noises. Nonlinear Anal. Applns. Real World Applns. 11 (2010), 3437-3445.; · Zbl 1203.37124
[23] B. Maslowski, B. Schmalfus, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl. 22 (2004), 1577-1607.; · Zbl 1062.60060
[24] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences. Cambridge Univ. Press, Cambridge (2001).; · Zbl 0993.37002
[25] H. Rodrigues, Abstract methods for synchronization and application. Appl. Anal. 62 (1996), 263-296.; · Zbl 0890.34052
[26] Z. Shen, S. Zhou, X. Han, Synchronization of coupled stochastic systems with multiplicative noise. Stoch. Dyn. 10 (2010), 407-428.; · Zbl 1203.60077
[27] S. Strogatz, Sync: The Emerging Science of Spontaneous Order. Hyperion Press (2003).;
[28] M. Zahle, Integration with respect to fractal functions and stochastic calculus, I. Probab. Theory Relat. Fields 111 (1998), 333-374.; · Zbl 0918.60037
[29] C. Zeng, Y. Chen, Q. Yang, The fBm-driven Ornstein-Uhlenbeck process: Probability density function and anomalous diffusion. Fract. Calc. Appl. Anal. 15, No 3 (2012), 479-492; DOI: 10.2478/s13540-012-0034- z; http://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.; · Zbl 1274.60127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.