Beauville, A. Non-rationality of the \({\mathfrak S}_6\)-symmetric quartic threefolds. (English) Zbl 1327.14220 Rend. Semin. Mat., Univ. Politec. Torino 71, No. 3-4, 385-388 (2013). Summary: We prove that the quartic hypersurfaces defined by \(\sum x_i= t \sum x^4_i-(\sum x^2_i)^2= 0\) in \(\mathbb{P}^5\) are not rational for \(t\neq 0,2,4,6,{10\over 7}\). Cited in 5 Documents MSC: 14M20 Rational and unirational varieties 14E08 Rationality questions in algebraic geometry 14K30 Picard schemes, higher Jacobians PDF BibTeX XML Cite \textit{A. Beauville}, Rend. Semin. Mat., Univ. Politec. Torino 71, No. 3--4, 385--388 (2013; Zbl 1327.14220)