×

zbMATH — the first resource for mathematics

The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions. (English) Zbl 1326.81254
Summary: We study the Higgs boson mass and the spectrum of supersymmetric (SUSY) particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang-Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.

MSC:
81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aad, G., Phys. Lett. B, 716, 1, (2012)
[2] Chatrchyan, S., Phys. Lett. B, 716, 30, (2012)
[3] Bachas, C.; Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Phys. Lett. B, 489, 223, (2000)
[4] Cremades, D.; Ibanez, L. E.; Marchesano, F., J. High Energy Phys., 0405, 079, (2004)
[5] Abe, H.; Kobayashi, T.; Ohki, H.; Sumita, K., Nucl. Phys. B, 863, 1, (2012)
[6] Abe, H.; Kobayashi, T.; Ohki, H.; Oikawa, A.; Sumita, K., Nucl. Phys. B, 870, 30, (2013)
[7] Marcus, N.; Sagnotti, A.; Siegel, W.; Arkani-Hamed, N.; Gregoire, T.; Wacker, J. G., Nucl. Phys. B, J. High Energy Phys., 0203, 055, (2002)
[8] Green, M. B.; Schwarz, J. H., Phys. Lett. B, 149, 117, (1984)
[9] Abe, H.; Kobayashi, T.; Ohki, H.; Sumita, K.; Tatsuta, Y.
[10] Polchinski, J., String theory. vol. 2: superstring theory and beyond, (1998), Univ. Pr Cambridge, UK, 531 p
[11] Choi, K.; Falkowski, A.; Nilles, H. P.; Olechowski, M., Nucl. Phys. B, 718, 113, (2005)
[12] Kobayashi, M.; Maskawa, T., Prog. Theor. Phys., 49, 652, (1973)
[13] Beringer, J., Phys. Rev. D, 86, 010001, (2012)
[14] Yanagida, T.; Gell-Mann, M.; Ramond, P.; Slansky, R., (van Nieuwenhuizen, P.; Freedman, D. Z., Supergravity, (1979), North Holland Amsterdam), 64, 315, (1980), Print-80-0576 (CERN)
[15] Pontecorvo, B.; Maki, Z.; Nakagawa, M.; Sakata, S., Sov. Phys. JETP, Zh. Eksp. Teor. Fiz., Prog. Theor. Phys., 28, 870, (1962)
[16] Randall, L.; Sundrum, R.; Giudice, G. F.; Luty, M. A.; Murayama, H.; Rattazzi, R., Nucl. Phys. B, J. High Energy Phys., 9812, 027, (1998)
[17] Choi, K.; Jeong, K. S.; Okumura, K.-i., J. High Energy Phys., 0509, 039, (2005)
[18] Endo, M.; Yamaguchi, M.; Yoshioka, K., Phys. Rev. D, 72, 015004, (2005)
[19] Carena, M. S.; Quiros, M.; Wagner, C. E.M., Nucl. Phys. B, 461, 407, (1996)
[20] Misiak, M.; Pokorski, S.; Rosiek, J., Adv. Ser. Dir. High Energy Phys., 15, 795, (1998)
[21] Gambino, P.; Misiak, M., Nucl. Phys. B, 611, 338, (2001)
[22] Choi, K.; Jeong, K. S.; Kobayashi, T.; Okumura, K.i.; Kitano, R.; Nomura, Y.; Choi, K.; Jeong, K. S.; Kobayashi, T.; Okumura, K.i., Phys. Lett. B, Phys. Lett. B, Phys. Rev. D, 75, 095012, (2007)
[23] Abe, H.; Kobayashi, T.; Omura, Y.; Abe, H.; Kawamura, J.; Otsuka, H., Phys. Rev. D, PTEP, Proces. Teh. Energ. Poljopr., 2013, 013B02, (2013)
[24] Abe, H.; Kawamura, J.
[25] Arana-Catania, M.; Heinemeyer, S.; Herrero, M. J., Phys. Rev. D, 88, 015026, (2013)
[26] Kachru, S.; Kallosh, R.; Linde, A. D.; Trivedi, S. P., Phys. Rev. D, 68, 046005, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.