A Hamiltonian approach to wave-current interactions in two-layer fluids. (English) Zbl 1326.76021

Summary: We provide a Hamiltonian formulation for the governing equations describing the two-dimensional nonlinear interaction between coupled surface waves, internal waves, and an underlying current with piecewise constant vorticity, in a two-layered fluid overlying a flat bed. This Hamiltonian structure is a starting point for the derivation of simpler models, which can be obtained systematically by expanding the Hamiltonian in dimensionless parameters. These enable an in-depth study of the coupling between the surface and internal waves, and how both these wave systems interact with the background current.{
©2015 American Institute of Physics}


76B55 Internal waves for incompressible inviscid fluids
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76B07 Free-surface potential flows for incompressible inviscid fluids
Full Text: DOI


[1] Fedorov, A. V.; Brown, J. N.; Steele, J., Equatorial waves, Encyclopedia of Ocean Sciences, 3679-3695 (2009)
[2] Johnson, G. C.; McPhaden, M. J., Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling, J. Phys. Oceanogr., 31, 839-849 (2001)
[3] Constantin, A.; Johnson, R. S., The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109, 311-358 (2015)
[4] Cronin, M. F.; Kessler, W. S., Near-surface shear flow in the tropical Pacific cold tongue front, J. Phys. Oceanogr., 39, 1200-1215 (2009)
[5] Santiago-Mandujano, F.; Firing, E., Mixed-layer shear generated by wind stress in the Central Equatorial Pacific, J. Phys. Oceanogr., 20, 1576-1582 (1990)
[6] Maslowe, S. A., Critical layers in shear flows, Annu. Rev. Fluid Mech., 18, 405-432 (1986) · Zbl 0634.76046
[7] Alpers, W.; Njoku, E. G., Ocean internal waves, Encyclopedia of Remote Sensing, 433-437 (2014)
[8] Constantin, A., Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis (2011) · Zbl 1266.76002
[9] da Silva, A. F. T.; Peregrine, D. H., Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech., 195, 281-302 (1988)
[10] Falkovich, G., Fluid Mechanics (2011)
[11] Craig, W.; Guyenne, P.; Kalisch, H., Hamiltonian long-wave expansions for free surfaces and interfaces, Commun. Pure Appl. Math., 58, 1587-1641 (2005) · Zbl 1151.76385
[12] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194 (1968)
[13] WahlĂ©n, E., A Hamiltonian formulation of water waves with constant vorticity, Lett. Math. Phys., 79, 303-315 (2007) · Zbl 1126.37055
[14] Constantin, A., The trajectories of particles in Stokes waves, Invent. Math., 166, 523-535 (2006) · Zbl 1108.76013
[15] Constantin, A.; Strauss, W., Pressure beneath a Stokes wave, Commun. Pure Appl. Math., 63, 533-557 (2010) · Zbl 1423.76061
[16] Clamond, D., Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves, Philos. Trans. R. Soc., A, 370, 1572-1586 (2012) · Zbl 1250.76033
[17] Umeyama, M., Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry, Philos. Trans. R. Soc., A, 370, 1687-1702 (2012) · Zbl 1250.76042
[18] Umeyama, M.; Matsuki, S., Measurements of velocity and trajectory of water particle for internal waves in two density layers, Geophys. Res. Lett., 38, L03612 (2011)
[19] Chiang, T. L.; Qu, T., Subthermocline eddies in the Western Equatorial Pacific as shown by an eddy-resolving OGCM, J. Phys. Oceanogr., 43, 1241-1253 (2013)
[20] Kakutani, T.; Yamasaki, N., Solitary waves on a two-layer fluid, J. Phys. Soc. Jpn., 45, 674-679 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.