zbMATH — the first resource for mathematics

A jump-type SDE approach to real-valued self-similar Markov processes. (English) Zbl 1326.60109
The author studies self-similar Markov processes in continuous time on the state spaces \([0,\infty[\) and \(\mathbb R\), where sometimes, in addition, a trap at zero is assumed. By some transform, it suffices to study these processes with the self-similarity index 1 only. By a classical result of J. Lamperti [Z. Wahrscheinlichkeitstheor. Verw. Geb. 22, 205–225 (1972; Zbl 0274.60052)], all self-similar positive processes can be classified as time-changes of exponentials of Lévy processes. In particular, the only continuous positive self-similar Markov processes are the squared Bessel processes.
The paper under review is devoted to the more complicated case with state space \(\mathbb R\) under additional serious restrictions. Motivated by the recent work of L. Chaumont et al. [Bernoulli 19, No. 5B, 2494–2523 (2013; Zbl 1284.60077)], the author uses jump-type SDEs and derives a representation for symmetric self-similar processes on \(\mathbb R\) whose absolute values admit decreasing jumps only and which leave zero continuously. The representation uses some spectrally negative Lévy process killed at certain rates and with certain Laplace exponents. Prominent examples for the theory of the author are (suitably renormalized) one-dimensional Dunkl processes \((X_t)_t\) whose absolute values \((|X_t|)_t\) form squared Bessel processes.

60J25 Continuous-time Markov processes on general state spaces
60G18 Self-similar stochastic processes
60J75 Jump processes (MSC2010)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G51 Processes with independent increments; Lévy processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Full Text: DOI
[1] Aldous, David, Stopping times and tightness, Ann. Probability, 6, 2, 335-340, (1978) · Zbl 0391.60007
[2] Applebaum, David, L\'evy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics 116, xxx+460 pp., (2009), Cambridge University Press: Cambridge:Cambridge University Press · Zbl 1200.60001
[3] Barczy, M\'aty\'as; D\"oring, Leif, On entire moments of self-similar Markov processes, Stoch. Anal. Appl., 31, 2, 191-198, (2013) · Zbl 1264.60027
[4] Bass, Richard F.; Burdzy, Krzysztof; Chen, Zhen-Qing, Pathwise uniqueness for a degenerate stochastic differential equation, Ann. Probab., 35, 6, 2385-2418, (2007) · Zbl 1139.60027
[5] [BDMZ] J. Berestycki, L. D\"oring, L. Mytnik and L. Zambotti, On existence and uniqueness for self-similar SDEs driven by stable processes, arXiv:1111.4388 (2012)
[6] Bertoin, Jean; Caballero, Maria-Emilia, Entrance from \(0+\) for increasing semi-stable Markov processes, Bernoulli, 8, 2, 195-205, (2002) · Zbl 1002.60032
[7] Bertoin, Jean; Savov, Mladen, Some applications of duality for L\'evy processes in a half-line, Bull. Lond. Math. Soc., 43, 1, 97-110, (2011) · Zbl 1213.60090
[8] Bertoin, Jean; Yor, Marc, The entrance laws of self-similar Markov processes and exponential functionals of L\'evy processes, Potential Anal., 17, 4, 389-400, (2002) · Zbl 1004.60046
[9] Bertoin, Jean; Yor, Marc, On the entire moments of self-similar Markov processes and exponential functionals of L\'evy processes, Ann. Fac. Sci. Toulouse Math. (6), 11, 1, 33-45, (2002) · Zbl 1031.60038
[10] Bertoin, Jean; Yor, Marc, Exponential functionals of L\'evy processes, Probab. Surv., 2, 191-212, (2005) · Zbl 1189.60096
[11] Blumenthal, R. M., On construction of Markov processes, Z. Wahrsch. Verw. Gebiete, 63, 4, 433-444, (1983) · Zbl 0494.60071
[12] Caballero, M. E.; Chaumont, L., Weak convergence of positive self-similar Markov processes and overshoots of L\'evy processes, Ann. Probab., 34, 3, 1012-1034, (2006) · Zbl 1098.60038
[13] Chaumont, Lo\"\i c; Pant\'\i , Henry; Rivero, V\'\i ctor, The Lamperti representation of real-valued self-similar Markov processes, Bernoulli, 19, 5B, 2494-2523, (2013) · Zbl 1284.60077
[14] Chaumont, Lo\"\i c; Kyprianou, Andreas; Pardo, Juan Carlos; Rivero, V\'\i ctor, Fluctuation theory and exit systems for positive self-similar Markov processes, Ann. Probab., 40, 1, 245-279, (2012) · Zbl 1241.60019
[15] Chybiryakov, Oleksandr, The Lamperti correspondence extended to L\'evy processes and semi-stable Markov processes in locally compact groups, Stochastic Process. Appl., 116, 5, 857-872, (2006) · Zbl 1094.60035
[16] Dellacherie, Claude; Meyer, Paul-Andr\'e, Probabilit\'es et potentiel. Chapitres V \`a VIII, Actualit\'es Scientifiques et Industrielles [Current Scientific and Industrial Topics] 1385, xviii+476 pp., (1980 (French)), Hermann: Paris:Hermann
[17] D\"oring, Leif; Barczy, M\'aty\'as, A jump type SDE approach to positive self-similar Markov processes, Electron. J. Probab., 17, no. 94, 39 pp., (2012) · Zbl 1286.60036
[18] \bibEthierKurtzbook author=Ethier, Stewart N., author=Kurtz, Thomas G., title=Markov processes, series=Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, pages=x+534, publisher=John Wiley & Sons Inc., address=New York, date=1986, doi=10.1002/9780470316658, isbn=0-471-08186-8, review=\MR 838085 (88a:60130),
[19] Fitzsimmons, P. J., On the existence of recurrent extensions of self-similar Markov processes, Electron. Comm. Probab., 11, 230-241, (2006) · Zbl 1110.60036
[20] Fu, Zongfei; Li, Zenghu, Stochastic equations of non-negative processes with jumps, Stochastic Process. Appl., 120, 3, 306-330, (2010) · Zbl 1184.60022
[21] Ikeda, Nobuyuki; Watanabe, Shinzo, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library 24, xiv+464 pp., (1981), North-Holland Publishing Co.: Amsterdam:North-Holland Publishing Co. · Zbl 0495.60005
[22] Jacod, Jean; Shiryaev, Albert N., Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288, xx+661 pp., (2003), Springer-Verlag: Berlin:Springer-Verlag · Zbl 1018.60002
[23] Karatzas, Ioannis; Shreve, Steven E., Brownian motion and stochastic calculus, Graduate Texts in Mathematics 113, xxiv+470 pp., (1991), Springer-Verlag: New York:Springer-Verlag · Zbl 0734.60060
[24] Kiu, Sun Wah, Two dimensional semi-stable Markov processes, Ann. Probability, 3, 3, 440-448, (1975) · Zbl 0309.60057
[25] Kiu, Sun Wah, Semistable Markov processes in \(\textbf{R}^{n}\), Stochastic Process. Appl., 10, 2, 183-191, (1980) · Zbl 0436.60054
[26] Kuznetsov, A.; Pardo, J. C., Fluctuations of stable processes and exponential functionals of hypergeometric L\'evy processes, Acta Appl. Math., 123, 113-139, (2013) · Zbl 1268.60060
[27] Lamperti, John, Semi-stable Markov processes. I, Z. Wahrsch. Verw. Gebiete, 22, 205-225, (1972) · Zbl 0274.60052
[28] Li, Zenghu; Pu, Fei, Strong solutions of jump-type stochastic equations, Electron. Commun. Probab., 17, no. 33, 13 pp., (2012) · Zbl 1260.60132
[29] Patie, Pierre, Exponential functional of a new family of L\'evy processes and self-similar continuous state branching processes with immigration, Bull. Sci. Math., 133, 4, 355-382, (2009) · Zbl 1171.60009
[30] Protter, Philip E., Stochastic integration and differential equations, \textupStochastic Modelling and Applied Probability, Applications of Mathematics (New York) 21, xiv+415 pp., (2004), Springer-Verlag: Berlin:Springer-Verlag · Zbl 1041.60005
[31] Revuz, Daniel; Yor, Marc, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293, xiv+602 pp., (1999), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0917.60006
[32] Rivero, V\'\i ctor, Recurrent extensions of self-similar Markov processes and Cram\'er’s condition, Bernoulli, 11, 3, 471-509, (2005) · Zbl 1077.60055
[33] Rivero, V\'\i ctor, Recurrent extensions of self-similar Markov processes and Cram\'er’s condition. II, Bernoulli, 13, 4, 1053-1070, (2007) · Zbl 1132.60056
[34] Sato, Ken-iti, L\'evy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics 68, xii+486 pp., (1999), Cambridge University Press: Cambridge:Cambridge University Press · Zbl 0973.60001
[35] Yamada, Toshio; Watanabe, Shinzo, On the uniqueness of solutions of stochastic differential equations. , J. Math. Kyoto Univ., 11, 155-167, (1971) · Zbl 0236.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.