zbMATH — the first resource for mathematics

Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type. (English) Zbl 1326.60089
Summary: In this paper, we prove the existence and uniqueness of maximal strong (in PDE sense) solutions to several stochastic hydrodynamical systems on unbounded and bounded domains of \(\mathbb R^n\), \(n=2,3\). This maximal solution turns out to be a global one in the case of 2D stochastic hydrodynamical systems. Our framework is general in the sense that it allows us to solve the Navier-Stokes equations, MHD equations, Magnetic Bénard problems, Boussinesq model of the Bénard convection, Shell models of turbulence and the Leray-\(\alpha\) model with jump type perturbation. Our goal is achieved by proving general results about the existence of maximal and global solutions to abstract stochastic partial differential equations with locally Lipschitz continuous coefficients. The methods of the proofs are based on some truncation and fixed point methods.

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60G51 Processes with independent increments; Lévy processes
60G57 Random measures
35R60 PDEs with randomness, stochastic partial differential equations
35Q35 PDEs in connection with fluid mechanics
35Q30 Navier-Stokes equations
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
Full Text: DOI arXiv
[1] Barbato, D.; Barsanti, M.; Bessaih, H.; Flandoli, F., Some rigorous results on a stochastic GOY model, J. Stat. Phys., 125, 677-716, (2006) · Zbl 1107.82057
[2] Bensoussan, A., Stochastic Navier-Stokes equations, Acta Appl. Math., 38, 267-304, (1995) · Zbl 0836.35115
[3] Bensoussan, A.; Freshe, J., Local solutions for stochastic Navier-Stokes equations, M2AN Math. Model. Numer. Anal., 34, 241-273, (2000) · Zbl 0972.76021
[4] Bensoussan, A.; Temam, R., Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 13, 195-222, (1973) · Zbl 0265.60094
[5] Bessaih, H.; Millet, A., Large deviation principle and inviscid shell models, Electron. J. Probab., 14, 2551-2579, (2009) · Zbl 1191.60074
[6] Bessaih, H.; Flandoli, F.; Titi, E.S., Stochastic attractors for shell phenomenological models of turbulence, J. Stat. Phys., 140, 688-717, (2010) · Zbl 1402.76056
[7] Brzeźniak, Z.; Hausenblas, E., Maximal regularity for stochastic convolutions driven by Lévy processes, Probab. Theory Rel. Field., 145, 615-637, (2009) · Zbl 1178.60046
[8] Brzeźniak, Z.; Hausenblas, E.; Razafimandimby, P., Stochastic nonparabolic dissipative systems modeling the flow of liquid crystals: strong solution, RIMS Symp. Math. Anal. Incompress. Flow RIMS Kôkyûroku, 1875, 41-73, (2013)
[9] Brzeźniak, Z.; Hausenblas, E.; Zhu, J., 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79, 122-139, (2013) · Zbl 1261.60061
[10] Brzeźniak, Z.; Millet, A., On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold, Potential Anal., 41, 269-315, (2014) · Zbl 1304.58019
[11] Brzeźniak, Z.; Motyl, E., Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains, J. Differ. Eqs., 254, 1627-1685, (2013) · Zbl 1259.35230
[12] Brzeźniak, Z.; Maslowski, B.; Seidler, J., Stochastic nonlinear beam equations, Probab. Theory Rel. Fields, 132, 119-149, (2005) · Zbl 1071.60053
[13] Brzeźniak, Z., Zhu, J.: Stochastic nonlinear beam equations driven by compensated poisson random measures. arXiv:1011.5377 · Zbl 0836.35115
[14] Chepyzhov, V.; Titi, E.; Vishik, M., On the convergence of solutions of the Leray-\({α}\) model to the trajectory attractor of the 3D Navier-Stokes system, Discrete Contin. Dyn. Syst., 17, 481-500, (2007) · Zbl 1146.35071
[15] Cheskidov, A.; Holm, D.; Olson, E.; Titi, E., On a Leray-\({α}\) model of turbulence, Proc. R. Soc. Lond. Ser. A, 461, 629-649, (2005) · Zbl 1145.76386
[16] Constantin, P.; Levant, B.; Titi, E.S., Analytic study of the shell model of turbulence, Phys. D, 219, 120-141, (2006) · Zbl 1113.34044
[17] Chueshov, I.; Millet, A., Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61, 379-420, (2010) · Zbl 1196.49019
[18] Bouard, A.; Debussche, A., A stochastic nonlinear Schrödinger equation with multiplicative noise, Commun. Math. Phys., 205, 161-181, (1999) · Zbl 0952.60061
[19] Bouard, A.; Debussche, A., The stochastic nonlinear Schrödinger equation in \(H\)\^{1}, Stoch. Anal. Appl., 21, 97-126, (2003) · Zbl 1027.60065
[20] Deugoue, G., Sango, M.: On the strong solution for the 3D stochastic Leray-Alpha model. Bound. Value Probl. vol. 2010, Article ID 723018, p. 31 (2010). doi:10.1155/2010/723018 · Zbl 1187.35011
[21] Dong, Z.; Jianliang, Z., Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump, J. Differ. Eqs., 250, 2737-2778, (2011) · Zbl 1218.60056
[22] Duvaut, G.; Lions, J.L., Inéquations en thermoélasticité et magnéto hydrodynamique, Arch. Ration. Mech. Anal., 46, 241-279, (1972) · Zbl 0264.73027
[23] Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1986) · Zbl 1059.35096
[24] Fernando, B.P.W.; Sritharan, S.S., Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise stoch, Anal. Appl, 31, 381-426, (2013) · Zbl 1311.60068
[25] Flandoli, F.; Gubinelli, M.; Hairer, M.; Romito, M., Rigourous remarks about scaling laws in turbulent fluid, Commun. Math. Phys, 278, 1-29, (2008) · Zbl 1140.76011
[26] Flandoli, F.; Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations probab, Theory Rel. Fields, 102, 367-391, (1995) · Zbl 0831.60072
[27] Foias, C.; Manley, O.; Temam, R., Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal., 11, 939-967, (1987) · Zbl 0646.76098
[28] Galdi, G.P.; Padula, M., A new approach to energy theory in the stability of fluid motion, Arch. Ration. Mech. Anal, 110, 187-286, (1990) · Zbl 0719.76035
[29] Glatt-Holtz, N.; Ziane, M., Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differ. Eqs., 14, 567-600, (2009) · Zbl 1195.60090
[30] Gyöngy, I.; Krylov, N.V., On stochastics equations with respect to semimartingales. II. Itô formula in Banach spaces, Stochastics, 6, 153-173, (1981) · Zbl 0481.60060
[31] Hausenblas, E.; Razafimandimby, P.A.; Sango, M., Martingale solution to differential type fluids of grade two driven by random force of Lévy type, Potential Anal., 38, 1291-1331, (2013) · Zbl 1317.60078
[32] Imkeller, P.; Pavlyukevich, I., First exit times of SDEs driven by stable L évy processes, Stoch. Process. Appl., 116, 611-642, (2006) · Zbl 1104.60030
[33] Katz, N.H.; Pavlović, N., Finite time blow-up for a dyadic model of the Euler equations, Trans. Am. Math. Soc., 357, 695-708, (2005) · Zbl 1059.35096
[34] Kim, J.U., Strong solutions of the stochastic Navier-Stokes equations in \({\mathbb{R}^3}\), Indiana Univ. Math. J., 59, 1417-1450, (2010) · Zbl 1226.35088
[35] Kupiainen, A.: Statistical theories of turbulence. In: Wehr, J. (ed.) Random Media 2000, p. 29. Wydawnictwa ICM, Warszawa (2004) · Zbl 1061.76025
[36] Ladyzhenskaya, O.; Solonnikov, V., Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid, Trudy Steklov Math. Inst., 59, 115-173, (1960)
[37] Lvov, V.S.; Podivilov, E.; Pomyalov, A.; Procaccia, I.; Vandembroucq, D., Improved shell model of turbulence, Phys. Rev. E, 58, 1811-1822, (1998) · Zbl 0905.28006
[38] Mikulevicius, R., On strong \({H^{1}_{2}}\)-solutions of stochastic Navier-Stokes equation in a bounded domain, SIAM J. Math. Anal, 41, 1206-1230, (2009) · Zbl 1203.60089
[39] Motyl, E., Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains, Potential Anal., 38, 863-912, (2013) · Zbl 1282.35282
[40] Menaldi, J.-L.; Sritharan, S.S., Stochastic 2-D Navier-Stokes equation, Appl. Math. Optim., 46, 31-53, (2012) · Zbl 1016.35072
[41] Mikulevicius, R.; Rozovskii, B.L., Stochastic Navier-Stokes equations and turbulent flows SIAM J, Math. Anal., 35, 1250-1310, (2004) · Zbl 1062.60061
[42] Ohkitani, K.; Yamada, M., Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 89, 329-341, (1989)
[43] Pardoux, E.: Equations aux dérivées partielles stochastiques non linéaires monotones; Etude de solutions fortes de type Itô. Thèse (PhD Thesis), Université Paris Sud (1975) · Zbl 1282.35282
[44] Peszat, S., Zabzcyk, J.: Stochastic partial differential equations with Lévy noise: an evolution equation approach. Encyclopedia of mathematics and its applications vol. 113. Cambridge University Press, Cambridge (2007) · Zbl 0265.60094
[45] Protter, P.E.: Stochastic integration and differential equations. Applications of Mathematics (New York). Stochastic Modelling and Applied Probability vol. 21, 2nd edn. Springer, Berlin, Heidelberg (2005) · Zbl 0524.76099
[46] Rüdiger, B.; Ziglio, G., Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces, Stochastics, 78, 377-410, (2006) · Zbl 1117.60056
[47] Sakthivel, K.; Sritharan, S.S., Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise evol, Equ. Control Theory, 1, 355-392, (2012) · Zbl 1260.35128
[48] Sango, M., Magnetohydrodynamic turbulent flows: existence results, Phys. D: Nonlinear Phenom., 239, 912-923, (2010) · Zbl 1193.76162
[49] Sermange, M.; Temam, R., Some mathematical questions related to MHD equations, Commun. Pure Appl. Math., 36, 635-664, (1983) · Zbl 0524.76099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.