zbMATH — the first resource for mathematics

On genus expansion of superpolynomials. (English) Zbl 1326.57030
Summary: Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation \(R\) is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are \(\beta\)-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik’s (DAHA-based) approach to the torus knots.

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI arXiv
[1] Mironov, A.; Morozov, A.; Sleptsov, A.
[2] Mironov, A.; Morozov, A.; Sleptsov, A., Eur. Phys. J. C, 73, 2492, (2013)
[3] Alexander, J. W.; Conway, J. H.; Jones, V. F.R.; Jones, V. F.R.; Jones, V. F.R.; Kauffman, L.; Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B.R.; Millet, K.; Ocneanu, A.; Przytycki, J. H.; Traczyk, K. P., Algebraic properties, (Leech, John, Computational Problems in Abstract Algebra, Proc. Conf. Oxford, vol. 1967, (1970), Pergamon Press Oxford-New York), Invent. Math., Bull. Am. Math. Soc., Ann. Math., Topology, Bull. Am. Math. Soc., Kobe J. Math., 4, 2, 115-139, (1987)
[4] Alexandrov, A.; Mironov, A.; Morozov, A.; Alexandrov, A.; Mironov, A.; Morozov, A.; Alexandrov, A.; Mironov, A.; Morozov, A.; Alexandrov, A.; Mironov, A.; Morozov, A.; Alexandrov, A.; Mironov, A.; Morozov, A.; Putrov, P.; Eynard, B.; Chekhov, L.; Eynard, B.; Chekhov, L.; Eynard, B.; Orantin, N., Int. J. Mod. Phys. A, Theor. Math. Phys., Physica D, J. High Energy Phys., Int. J. Mod. Phys. A, J. High Energy Phys., J. High Energy Phys., J. High Energy Phys., 0612, 026-4998, (2006)
[5] Dijkgraaf, R.; Fuji, H.; Manabe, M., Nucl. Phys. B, 849, 166-211, (2011)
[6] Ooguri, H.; Vafa, C.; Labastida, J.; Mariño, M.; Marino, M.; Vafa, C., Nucl. Phys. B, Commun. Math. Phys., 217, 423-449, (2001), math/010418
[7] Mironov, A.; Morozov, A.; Natanzon, S., J. High Energy Phys., 1111, 097, (2011)
[8] Mironov, A.; Morozov, A.; Natanzon, S.; Mironov, A.; Morozov, A.; Natanzon, S., Theor. Math. Phys., J. Geom. Phys., 62, 148-155, (2012)
[9] Mironov, A.; Morozov, A.; Morozov, An., (Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, (2013), World Scientific), 101-118
[10] Mironov, A.; Morozov, A., Phys. Lett. B, 490, 173-179, (2000)
[11] Gelca, R.; Gelca, R.; Sain, J.; Gukov, S.; Garoufalidis, S., Math. Proc. Camb. Philos. Soc., J. Knot Theory Ramif., Commun. Math. Phys., Geom. Topol. Monogr., 7, 291-309, (2004)
[12] Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, And., J. High Energy Phys., 1207, 131, (2012)
[13] Mironov, A.; Morozov, A., AIP Conf. Proc., 1483, 189-211, (2012)
[14] Kontsevich, M.; Alvarez, M.; Labastida, J. M.F.; Perez, E., Adv. Sov. Math., Nucl. Phys. B, 488, 677-718, (1997), Part 2
[15] Chmutov, S.; Duzhin, S.; Mostovoy, J., Introduction to Vassiliev knot invariants, (2012), Cambridge University Press · Zbl 1245.57003
[16] Labastida, J. M.F.; Perez, Esther; Chmutov, S.; Duzhin, S., The Kontsevich integral, (Francoise, J.-P.; Naber, G. L.; Tsou, S. T., Encyclopedia of Mathematical Physics, vol. 3, (2006), Elsevier Oxford), 39, 231-239, (1998)
[17] Kashaev, R.; Murakami, H.; Murakami, J.; Gukov, S.; Murakami, H.; Murakami, H., Mod. Phys. Lett. A, Acta Math., Lett. Math. Phys., 86, 79-98, (2008), See the latest review in
[18] Hikami, K.; Inoue, R.; Hikami, K.; Inoue, R.
[19] Fomin, S.; Zelevinsky, A.; Fomin, S.; Zelevinsky, A.; Fock, V. V.; Goncharov, A. B.; Fomin, S.; Shapiro, M.; Thurston, D.; Fomin, S.; Thurston, D., J. Am. Math. Soc., Compos. Math., Publ. Math. Inst. Hautes Études Sci., Acta Math., 201, 83-146, (2008)
[20] Dunfield, N. M.; Gukov, S.; Rasmussen, J., Exp. Math., 15, 129-159, (2006)
[21] Aganagic, M.; Shakirov, Sh.; Gukov, S.; Stosic, M.; Mironov, A.; Morozov, A.; Shakirov, Sh.; Sleptsov, A.; Fuji, H.; Gukov, S.; Stosic, M.; Sulkowski, P.; Nawata, S.; Ramadevi Zodinmawia, P.; Sun, X.; Negut, A.; Arthamonov, S.; Mironov, A.; Morozov, A., J. High Energy Phys., 1205, 070, (2012)
[22] Cherednik, I.; Gorsky, E.; Negut, A.
[23] Gorsky, E.; Gukov, S.; Stosic, M.
[24] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.
[25] Dunin-Barkowski, P.; Mironov, A.; Morozov, A.; Sleptsov, A.; Smirnov, A., J. High Energy Phys., 1303, 021, (2013)
[26] Morozov, A.
[27] Khovanov, M.; Bar-Natan, D.; Khovanov, M.; Rozhansky, L.; Khovanov, M.; Rozhansky, L.; Carqueville, N.; Murfet, D.; Dolotin, V.; Morozov, A.; Dolotin, V.; Morozov, A., Duke Math. J., Algebr. Geom. Topol., J. High Energy Phys., 1301, 065-370, (2013)
[28] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, And.
[29] Anokhina, A.; Morozov, An.
[30] Dolotin, V.; Morozov, A.
[31] Kerov, S.; Olshanski, G., Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér. I Math., 319, 2, 121-126, (1994) · Zbl 0830.20028
[32] S. Helgason, Differential geometry and symmetric spaces, 2001.
[33] Littlewood, D. E.; Hamermesh, M.; Fulton, W., Young tableaux: with applications to representation theory and geometry, (1997), London Mathematical Society
[34] Macdonald, I. G., Symmetric functions and Hall polynomials, (1995), Oxford Science Publications · Zbl 0899.05068
[35] Dijkgraaf, R., The moduli spaces of curves, Progress in Math., vol. 129, 149-163, (1995), Brikhäuser · Zbl 0913.14007
[36] Kharchev, S.; Marshakov, A.; Mironov, A.; Morozov, A.; Alexandrov, A.; Mironov, A.; Morozov, A.; Natanzon, S.; Alexandrov, A.; Mironov, A.; Morozov, A.; Natanzon, S., Int. J. Mod. Phys. A, J. Phys. A, Math. Theor., 45, 045209, (2012)
[37] Orlov, A.; Shcherbin, D. M.; Okounkov, A.; Orlov, A., Theor. Math. Phys., Math. Res. Lett., Theor. Math. Phys., 146, 183-206, (2006)
[38] Chern, S.-S.; Simons, J.; Schwarz, A. S.; Witten, E., New topological invariants arising in the theory of quantized fields, (Baku Topol. Conf., (1987)), Commun. Math. Phys., 121, 351-69, (1989)
[39] Marino, M.; Diaconescu, D. E.; Shende, V.; Vafa, C., Commun. Math. Phys., 319, 813-863, (2013)
[40] Alvarez, M.; Labastida, J. M.F., Nucl. Phys. B, 433, 555-596, (1995)
[41] Polyak, M.; Viro, O.; Goussarov, M.; Polyak, M.; Viro, O., Int. Math. Res. Not., 11, 445-453, (1994)
[42] Dunin-Barkowski, P.; Sleptsov, A.; Smirnov, A., Int. J. Mod. Phys. A, 28, 1330025, (2013)
[43] Ruijsenaars, S. N.M.; Schneider, H.; Ruijsenaars, S. N.M.; Ruijsenaars, S. N.M., Ann. Phys., Commun. Math. Phys., Commun. Math. Phys., 115, 127-165, (1988)
[44] S. Mironov, An. Morozov, Ye. Zenkevich, in press.
[45] Alday, L.; Gaiotto, D.; Tachikawa, Y.; Wyllard, N.; Mironov, A.; Morozov, A.; Mironov, A.; Morozov, A., Lett. Math. Phys., J. High Energy Phys., Phys. Lett. B, Nucl. Phys. B, 825, 1-37, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.