×

Monodromization method in the theory of almost-periodic equations. (English. Russian original) Zbl 1326.39011

St. Petersbg. Math. J. 25, No. 2, 303-325 (2014); translation from Algebra Anal. 25, No. 2, 203-235 (2013).
Summary: The basic ideas of the monodromization method, i.e., a renormalization approach to the study of one-dimensional two-frequency quasiperiodic equations, as well as the main results obtained with its help, are described.

MSC:

39A24 Almost periodic solutions of difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. S. Buslaev, Adiabatic perturbation of a periodic potential, Teoret. Mat. Fiz. 58 (1984), no. 2, 233 – 243 (Russian, with English summary). · Zbl 0534.34064
[2] V. S. Buslaev and L. A. Dmitrieva, Adiabatic perturbation of a periodic potential. II, Teoret. Mat. Fiz. 73 (1987), no. 3, 430 – 442 (Russian, with English summary). · Zbl 0643.34068
[3] V. S. Buslaev, Quasiclassical approximation for equations with periodic coefficients, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 77 – 98, 248 (Russian).
[4] V. S. Buslaev and L. A. Dmitrieva, A Bloch electron in an external field, Algebra i Analiz 1 (1989), no. 2, 1 – 29 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 287 – 320. · Zbl 0714.34128
[5] V. S. Buslaev, Spectral properties of the operators \?\?=-\?\?\?+\?(\?)\?+\?(\?\?)\?,\? is periodic, Order, disorder and chaos in quantum systems (Dubna, 1989) Oper. Theory Adv. Appl., vol. 46, Birkhäuser, Basel, 1990, pp. 85 – 107. · Zbl 0723.47042
[6] V. Buslaev, On spectral properties of adiabatically perturbed Schroedinger operators with periodic potentials, Séminaire sur les Équations aux Dérivées Partielles, 1990 – 1991, École Polytech., Palaiseau, 1991, pp. Exp. No. XXIII, 15.
[7] Vladimir Buslaev and Alain Grigis, Imaginary parts of Stark-Wannier resonances, J. Math. Phys. 39 (1998), no. 5, 2520 – 2550. · Zbl 1001.34075
[8] V. S. Buslaev, M. V. Buslaeva, and A. Gridzhis, Adiabatic asymptotics of the reflection coefficient, Algebra i Analiz 16 (2004), no. 3, 1 – 23 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 3, 437 – 452.
[9] V. S. Buslaev and A. A. Fedotov, Complex WKB method for Harper’s equation, Inst. Mittag-Leffler Report 11 (1993), 3-69. · Zbl 0821.34062
[10] -, On a class of martices related to Harper’s equation, Inst. Mittag-Leffler Report 19 (1993), 3-39.
[11] V. S. Buslaev and A. A. Fedotov, The complex WKB method for the Harper equation, Algebra i Analiz 6 (1994), no. 3, 59 – 83 (Russian); English transl., St. Petersburg Math. J. 6 (1995), no. 3, 495 – 517. · Zbl 0839.34066
[12] Vladimir Buslaev and Alexander Fedotov, The functional structure of the monodromy matrix for Harper’s equation, Mathematical results in quantum mechanics (Blossin, 1993) Oper. Theory Adv. Appl., vol. 70, Birkhäuser, Basel, 1994, pp. 321 – 342. · Zbl 0816.34058
[13] V. Buslaev and A. Fedotov, The monodromization and Harper equation, Séminaire sur les Équations aux Dérivées Partielles, 1993 – 1994, École Polytech., Palaiseau, 1994, pp. Exp. No. XXI, 23. · Zbl 0880.34082
[14] V. S. Buslaev and A. A. Fedotov, Bloch solutions for difference equations, Algebra i Analiz 7 (1995), no. 4, 74 – 122 (Russian); English transl., St. Petersburg Math. J. 7 (1996), no. 4, 561 – 594. · Zbl 0847.39002
[15] V. S. Buslaev and A. A. Fedotov, The Harper equation: monodromization without quasiclassics, Algebra i Analiz 8 (1996), no. 2, 65 – 97 (Russian); English transl., St. Petersburg Math. J. 8 (1997), no. 2, 231 – 254. · Zbl 0849.34066
[16] -, Spectre d’une matrice de monodromie pour l’equation de Harper, Equations aux derivees partielles, Exp. no. IV, pp. 1-21, St. Jean de Monts, 1998.
[17] V. Buslaev and A. Fedotov, On the difference equations with periodic coefficients, Adv. Theor. Math. Phys. 5 (2001), no. 6, 1105 – 1168. · Zbl 1012.39008
[18] E. I. Dinaburg and Ja. G. Sinaĭ, The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 8 – 21 (Russian).
[19] A. A. Fedotov, The complex WKB method for adiabatic perturbations of a periodic Schrödinger operators and spectrum almost periodic operators, POMI, SPb, 2011. · Zbl 1237.34148
[20] A. A. Fedotov, Adiabatic almost periodic Schrödinger operators, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 379 (2010), no. Matematicheskie Voprosy Teorii Rasprostraneniya Voln. 39, 103 – 141, 181 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 173 (2011), no. 3, 299 – 319. · Zbl 1237.34147
[21] Alexander Fedotov and Frédéric Klopp, A complex WKB method for adiabatic problems, Asymptot. Anal. 27 (2001), no. 3-4, 219 – 264 (English, with English and French summaries). · Zbl 1001.34082
[22] Alexander Fedotov and Frédéric Klopp, Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case, Comm. Math. Phys. 227 (2002), no. 1, 1 – 92 (English, with English and French summaries). · Zbl 1004.81008
[23] A. Fedotov and F. Klopp, The spectral theory of adiabatic quasi-periodic operators on the real line, Markov Process. Related Fields 9 (2003), no. 4, 579 – 614. · Zbl 1059.34060
[24] Alexander Fedotov and Frédéric Klopp, On the singular spectrum for adiabatic quasi-periodic Schrödinger operators on the real line, Ann. Henri Poincaré 5 (2004), no. 5, 929 – 978 (English, with English and French summaries). · Zbl 1059.81057
[25] Alexander Fedotov and Frédéric Klopp, Geometric tools of the adiabatic complex WKB method, Asymptot. Anal. 39 (2004), no. 3-4, 309 – 357 (English, with English and French summaries). · Zbl 1070.34124
[26] Alexander Fedotov and Frédéric Klopp, On the absolutely continuous spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4481 – 4516 (English, with English and French summaries). · Zbl 1101.34069
[27] Alexander Fedotov and Frédéric Klopp, Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 889 – 950 (English, with English and French summaries). · Zbl 1112.47038
[28] Alexander Fedotov and Frédéric Klopp, Weakly resonant tunneling interactions for adiabatic quasi-periodic Schrödinger operators, Mém. Soc. Math. Fr. (N.S.) 104 (2006), vi+105 (English, with English and French summaries). · Zbl 1129.34001
[29] -, Pointwise Existence of the Lyapunov Exponent for a Quasiperiodic Equation, Mathematical results in quantum mechanics, 66-78, World Sci. Publ., River Edge, NJ, 2008. · Zbl 1156.81370
[30] J. P. Guillement, B. Helffer, and P. Treton, Walk inside Hofstadter’s butterfly, J. Phys. France 50 (1989), 2019-2058.
[31] B. Helffer and J. Sjöstrand, Analyse semi-classique pour l’équation de Harper (avec application à l’équation de Schrödinger avec champ magnétique), Mém. Soc. Math. France (N.S.) 34 (1988), 113 pp. (1989) (French, with English summary). · Zbl 0714.34130
[32] Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol\(^{\prime}\)d et de Moser sur le tore de dimension 2, Comment. Math. Helv. 58 (1983), no. 3, 453 – 502 (French). · Zbl 0554.58034
[33] D. Hofstadter, Energy levels and Wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14 (1976), 2239-2249.
[34] Leonid Pastur and Alexander Figotin, Spectra of random and almost-periodic operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 297, Springer-Verlag, Berlin, 1992. · Zbl 0752.47002
[35] Eugene Sorets and Thomas Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys. 142 (1991), no. 3, 543 – 566. · Zbl 0745.34046
[36] M. Wilkinson, Critical properties of electron eigenstates in incommensurate systems, Proc. Roy. Soc. London Ser. A 391 (1984), no. 1801, 305 – 350.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.