×

Statistical stage transition detection method for small sample gene expression time series data. (English) Zbl 1325.92031

Summary: In terms of their internal (genetic) and external (phenotypic) states, living cells are always changing at varying rates. Periods of stable or low rate of change are often called states, stages, or phases, whereas high-rate periods are called transitions or transients. While states and transitions are observed phenotypically, such as cell differentiation, cancer progression, for example, are related with gene expression levels. On the other hand, stages of gene expression are definable based on changes of expression levels. Analyzing relations between state changes of phenotypes and stage transitions of gene expression levels is a general approach to elucidate mechanisms of life phenomena.
Herein, we propose an algorithm to detect stage transitions in a time series of expression levels of a gene by defining statistically optimal division points. The algorithm shows detecting ability for simulated datasets. An annotation based analysis on detecting results for a dataset of initial development of Caenorhabditis elegans agrees with that are presented in the literature.

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Joshi, P. M.; Riddle, M. R.; Djabrayan, N. J.; Rothman, J. H., Caenorhabditis elegans as a model for stem cell biology, Develop. Dynam., 239, 1539-1554 (2010)
[2] Huang, S.; Ernberg, I.; Kauffman, S., Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective, Seminars Cell Develop. Biol., 20, 761-884 (2009)
[3] Alfenore, S.; Cameleyre, X.; Benbadis, L.; Bideaux, C.; Uribelarrea, J. L.; Goma, G.; Molina-Jouve, C.; Guillouet, S. E., Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process, Appl. Microbiol. Biotechnol., 63, 537-542 (2004)
[4] Watanabe, D.; Nogami, S.; Ohya, Y.; Kanno, Y.; Zhou, Y.; Akao, T.; Shimoi, H., Ethanol fermentation driven by elevated expression of the g1 cyclin gene cln3 in sake yeast, J. Biosci. Bioeng., 122, 577-582 (2011)
[5] Ragland, G. J.; Egan, S. P.; Feder, J. L.; Berlocher, S. H.; Hahn, D. A., Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella, J. Exp. Biol., 214, Pt 23, 3948-3960 (2011)
[6] Stegle, O.; Denby, K. J.; Cooke, E. J.; Wild, D. L.; Ghahramani, Z.; Borgwardt, K. M., A robust bayesian two-sample test for detecting intervals of differential gene expression in microarray time series, J. Comput. Biol., 17, 355-367 (2010)
[7] Zhu, J.; Chen, Y.; Leonardson, A. S.; Wang, K.; Lamb, J. R.; Emilsson, V.; Schadt, E. E., Characterizing dynamic changes in the human blood transcriptional network, PLoS Comput. Biol., 6, e1000671 (2010)
[8] Yi, M.; Mittendorf, E. A.; Cormier, J. N.; Buchholz, T. A.; Bilimoria, K.; Sahin, A. A.; Hortobagyi, G. N.; Gonzalez-Angulo, A. M.; Luo, S.; Buzdar, A. U.; Crow, J. R.; Kuerer, H. M.; Hunt, K. K., Novel staging system for predicting disease-specific survival in patients with breast cancer treated with surgery as the first intervention: time to modify the current american joint committee on cancer staging system, J. Clin. Oncol., 35, 4654-4661 (2011)
[9] Sakamoto, Y.; Ishiguro, K.; Kitagawa, G., Akaike Information Criterion Statistics (1986), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht, Netherlands · Zbl 0608.62006
[10] Shapiro, S. S.; Wilk, M. B., An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611 (1965) · Zbl 0134.36501
[11] Wyse, J.; Friel, N.; Rue, H., Approximate simulation-free bayesian inference for multiple changepoint models with dependence within segments, Bayesian Anal., 6, 501-528 (2011) · Zbl 1330.62160
[12] Nishiyama, Y., A rank statistic for non-parametric k-sample and change point problems, J. Jpn. Stat. Soc., 41, 67-73 (2011) · Zbl 1235.62052
[13] Thomas, R.; Torre, L.d.l.; Chang, X.; Mehrotra, S., Validation and characterization of DNA microarray gene expression data distribution and associated moments, BMC Bioinform., 11, 576 (2010)
[14] Mason, C.; Hanson, R. L.; Ossowski, V.; Bian, L.; Baier, L. J.; Krakoff, J.; Bogardus, C., Bimodal distribution of RNA expression levels in human skeletal muscle tissue, BMC Genom., 12, 98 (2011)
[15] Konishi, T., Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment, BMC Bioinform., 5, 5 (2004)
[16] Baugh, L. R.; Hill, A. A.; Slonim, D. K.; Brown, E. L.; Hunter, C. P., Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome, Development, 130, 889-900 (2003)
[17] Edgar, R.; Domrachev, M.; Lash, A. E., Gene expression omnibus: Ncbi gene expression and hybridization array data repository, Nucl. Acids Res., 30, 207-210 (2002)
[18] Baugh, L. R.; Hill, A. A.; Claggett, J. M.; Hill-Harfe, K.; Wen, J. C.; Slonim, D. K.; Brown, E. L.; Hunter, C. P., The homeodomain protein pal-1 specifies a lineage-specific regulatory network in the C. elegans embryo, Development, 132, 1843-1854 (2005)
[19] The Gene Ontology Consortium, Gene ontology: tool for the unification of biology, Nature Genet., 25, 25-29 (2000)
[20] Tavazoie, S.; Hughes, J. D.; Campbell, M. J.; Cho, R. J.; Church, G. M., Systematic determination of genetic network architecture, Nature Genet., 22, 281-285 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.