×

zbMATH — the first resource for mathematics

The bulk-edge correspondence for the quantum Hall effect in Kasparov theory. (English) Zbl 1325.81199
Summary: We prove the bulk-edge correspondence in \(K\)-theory for the quantum Hall effect by constructing an unbounded Kasparov module from a short exact sequence that links the bulk and boundary algebras. This approach allows us to represent bulk topological invariants explicitly as a Kasparov product of boundary invariants with the extension class linking the algebras. This paper focuses on the example of the discrete integer quantum Hall effect, though our general method potentially has much wider applications.

MSC:
81V70 Many-body theory; quantum Hall effect
19K35 Kasparov theory (\(KK\)-theory)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Baaj, S.; Julg, P., Théorie bivariante de kasparov et opérateurs non bornés dans LES \(C\)*-modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math., 296, 875-878, (1983) · Zbl 0551.46041
[2] Bellissard, J.; Elst, A.; Schulz-Baldes, H., The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451, (1994) · Zbl 0824.46086
[3] Blackadar, B.: \(K\)-Theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Cambridge Univ. Press (1998) · Zbl 0913.46054
[4] Brain, S., Mesland, B., van Suijlekom, W.D.: Gauge theory for spectral triples and the unbounded Kasparov product (2013). arXiv:1306.1951 · Zbl 1341.58007
[5] Carey, A.L.; Neshveyev, A.L.; Nest, R.; Rennie, A., Twisted cyclic theory, equivariant KK-theory and KMS states, J. Reine Angew. Math., 650, 161-191, (2011) · Zbl 1218.19002
[6] Connes, A., Gravity coupled with matter and foundation of noncommutative geometry, Commun. Math. Phys., 182, 155-176, (1996) · Zbl 0881.58009
[7] Elbau, P.; Graf, G.M., Equality of bulk and edge Hall conductance revisited, Commun. Math. Phys., 229, 415-432, (2002) · Zbl 1001.81091
[8] Elgart, A.; Graf, G.M.; Schenker, J.H., Equality of the bulk and edge Hall conductances in a mobility gap, Commun. Math. Phys., 259, 185-221, (2005) · Zbl 1086.81081
[9] Kaad, J.; Lesch, M., Spectral flow and the unbounded kasparov product, Adv. Math., 298, 495-530, (2013) · Zbl 1294.19001
[10] Kasparov, G.G., The operator \(K\)-functor and extensions of \(C\)*-algebras, Math. USSR Izv., 16, 513-572, (1981) · Zbl 0464.46054
[11] Kellendonk, J., Richter, T., Schulz-Baldes, H.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A Math. Gen. 33(2), L27 (2000) · Zbl 0985.81137
[12] Kellendonk, J.; Richter, T.; Schulz-Baldes, H., Edge current channels and Chern numbers in the integer quantum Hall effect, Rev. Math. Phys., 14, 87-119, (2002) · Zbl 1037.81106
[13] Kellendonk, J.; Schulz-Baldes, H., Quantization of edge currents for continuous magnetic operators, J. Funct. Anal., 209, 388-413, (2004) · Zbl 1078.81024
[14] Kellendonk, J.; Schulz-Baldes, H., Boundary maps for \(C\)*-crossed products with an application to the quantum Hall effect, Commun. Math. Phys., 249, 611-637, (2004) · Zbl 1084.46058
[15] Kucerovsky, D., The KK-product of unbounded modules, K-Theory, 11, 17-34, (1997) · Zbl 0871.19004
[16] McCann, P.; Carey, A.L., A discrete model of the integer quantum Hall effect, Publ. RIMS Kyoto Univ., 32, 117-156, (1996) · Zbl 0858.46048
[17] Mathai, V., Thiang, G.C.: T-duality trivializes bulk-boundary correspondence (2015). arXiv:1505.05250 · Zbl 1353.82068
[18] Mesland, B., Unbounded bivariant \(K\)-theory and correspondences in noncommutative geometry, J. Reine Angew. Math., 691, 101-172, (2014) · Zbl 1293.58010
[19] Mesland, B.: Spectral triples and KK-theory: a survey. In: Clay mathematics proceedings, volume 16: topics in noncommutative geometry, pp. 197-212 (2012) · Zbl 1321.58020
[20] Pask, D.; Rennie, A., The noncommutative geometry of graph \(C\)*-algebras I: the index theorem, J. Funct. Anal., 233, 92-134, (2006) · Zbl 1099.46047
[21] Pimsner, M.; Voiculescu, D., Exact sequences for \(K\)-groups and ext-groups of certain cross-product \(C\)*-algebras, J. Oper. Theory, 4, 93-118, (1980) · Zbl 0474.46059
[22] Rennie, A., Robertson, D., Sims, A.: The extension class and KMS states for Cuntz-Pimsner algebras of some bi-Hilbertian bimodules. (2015). arXiv:1501.05363 · Zbl 1370.19004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.