×

Modeling of turbulent structure of an upward polydisperse gas-liquid flow. (English. Russian original) Zbl 1325.76188

Fluid Dyn. 50, No. 2, 229-239 (2015); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2015, No. 2, 57-69 (2015).
Summary: Calculations of the structure of an upward polydisperse gas-liquid pipe flow are presented. The model is based on the Eulerian approach with account of the feedback effect of the bubbles on the average parameters and turbulence of the carrier phase. The turbulent kinetic energy of the fluid is calculated using the transport equations for the Reynolds stresses. The bubble dynamics are described with account for the variation of the mean bubble volume due to the coalescence and break-up of the bubbles. The comparison of the results with experimental data shows that the approach developedmakes it possible to describe adequately turbulent gas-liquid flows over a wide range of variation of the gas volume fraction and the initial bubble size.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F25 Turbulent transport, mixing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Lopez de Bertodano, S.J. Lee, R.T. Lahey, and D.A. Drew, “The Prediction of Two-Phase Turbulence and Phase Distribution Using a Reynolds Stress Model,” Trans. ASME J. Fluids Eng. 112, 107-113 (1990). · doi:10.1115/1.2909357
[2] L.I. Zaichik, A.P. Skibin, and S.L. Solov’ev, “Simulation of the Distribution of Bubbles in a Turbulent Liquid Using a Diffusion-Inertia Model,” High Temperature 42(1), 111-117 (2004). · doi:10.1023/B:HITE.0000020098.97475.9c
[3] Kashinsky, ON; Lobanov, PD; Pakhomov, MA; etal., Experimental and Numerical Study of Downward Bubbly Flow in a Pipe, 3717-3727 (2006)
[4] V.I. Terekhov and M.A. Pakhomov, “Effect of Bubbles on the Flow Structure and Friction in a Downward Turbulent Gas-Liquid Flow,” High-Temperature 46(6), 924-930 (2008). · doi:10.1134/S0018151X08060163
[5] V.M. Alipchenkov and L.I. Zaichik, “Modeling of the Motion of Light-Weight Particles and Bubbles in Turbulent Flows,” Fluid Dynamics 45(4), 574-590 (2010). · Zbl 1215.76042 · doi:10.1134/S0015462810040071
[6] R.N. Gafiyatov, D.A. Gubaidullin, and A.A. Nikiforov, “Propagation of Acoustic Waves in Two-Fraction Bubbly Liquids With Account of Phase Transitions in Each Fraction,” Fluid Dynamics 48(3), 366-373 (2013). · Zbl 1272.76220 · doi:10.1134/S0015462813030101
[7] M.A. Vorob’ev, O.N. Kashinskii, P.D. Lobanov, and A.V. Chinak, “Formation of the Finely Dispersed Gas Phase in Downward and Upward Fluid Flows,” Fluid Dynamics 47(4), 494-500 (2012). · Zbl 1256.76009 · doi:10.1134/S0015462812040084
[8] P.M. Carrica, D.A. Drew, F. Bonetto, and R.T. Lahey, Jr., “A Polydisperse Model for Bubbly Two-Phase Flow Around a Surface Ship,” Int. J. Multiphase Flow 25(2), 257-305 (1999). · Zbl 1137.76542 · doi:10.1016/S0301-9322(98)00047-0
[9] J. Chahed, V. Roig, and L. Masbernat, “Eulerian-Eulerian Two-Fluid Model for Turbulent Gas-Liquid Bubbly Flows,” Int. J. Multiphase Flow 29, 23-49 (2003). · Zbl 1136.76483 · doi:10.1016/S0301-9322(02)00123-4
[10] M. Politano, P. Carrica, and J. Converti, “A model for Turbulent Polydisperse Two-Phase Flow in Vertical Channel,” Int. J. Multiphase Flow 29(1), 1153-1182 (2003). · Zbl 1136.76611 · doi:10.1016/S0301-9322(03)00065-X
[11] S. Kumar and D. Ramkrishna, “On the Solution of Population Balance Equations by Discretization-I. A Fixed Pivot Technique,” Chem. Eng. Sci. 51, 1311-1332 (1996). · doi:10.1016/0009-2509(96)88489-2
[12] S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu, “On the Numerical Study of Isothermal Vertical Bubbly Flow Using Two Population Balance Approaches,” Chem. Eng. Sci. 62, 4659-4674 (2007). · doi:10.1016/j.ces.2007.05.030
[13] A.K. Das, P.K. Das, and J.R. Thome, “Transition of Bubbly Flow in Vertical Tubes: New Criteria Through CFD Simulation,” Trans. ASME J. Fluids Eng. 131(9), Paper 091303 (2009).
[14] L. Deju, S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu, “Capturing Coalescence and Break-Up Processes in Vertical Gas-Liquid Flows: Assessment of Population Balance Methods,” Appl. Math. Model. 37, 8557-8577 (2013). · Zbl 1426.76700 · doi:10.1016/j.apm.2013.03.063
[15] E. Krepper, D. Lucas, T. Frank, et al. “The Inhomogeneous MUSIG Model for the Simulation of Polydispersed Flows,” Nucl. Eng. Des. 238, 1690-1702 (2008). · doi:10.1016/j.nucengdes.2008.01.004
[16] L.I. Zaichik, R.V. Mukin, L.S. Mukina, and V.F. Strizhov, “Development of Diffusion-Inertia Model for the Calculation of Turbulent Bubbly Flows. Isothermal Polydisperse Flow in a Vertical Pipe,” High Temperature 50(5), 665-675 (2012). · doi:10.1134/S0018151X12040220
[17] R.V. Mukin, “Modeling of Bubble Coalescence and Break-Up in Turbulent Bubbly Flow,” Int. J. Multiphase Flow 62(1), 52-66 (2014). · doi:10.1016/j.ijmultiphaseflow.2014.02.008
[18] B. Selma, R. Bannaru, and P. Proulx, “Simulation of Bubbly Flows: Comparison Between Direct Quadrature Method of Moments (DQMOM) and Method of Classes,” Chem. Eng. Sci. 65(6), 1925-1941. · Zbl 1136.76483
[19] Q. Wu, S. Kim, M. Ishii, and S.G. Beus, “One-Group Interfacial Area Transport in Vertical Bubbly Flow,” Int. J. Heat Mass Transfer 41, 1103-1112 (1998). · Zbl 0940.76529 · doi:10.1016/S0017-9310(97)00167-1
[20] X. Wang and X. Sun, “Three-Dimensional Simulations of Air-Water Bubbly Flows,” Int. J. Multiphase Flow 36(11-12), 882-890 (2010). · doi:10.1016/j.ijmultiphaseflow.2010.08.004
[21] V.T. Nguen, C.-H. Song, B.U. Bae, and D.J. Euh, “Modeling of Bubble Coalescence and Break-up Considering Suppression Phenomena in Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 54(1), 32-42 (2013).
[22] F. Lehr and D. Mewes, “A Transport Equation for the Interfacial Area Density Applied to Bubble Columns,” Chem. Eng. Sci. 56, 1159-1166 (2001). · doi:10.1016/S0009-2509(00)00335-3
[23] D. Lucas, E. Krepper, and H.-M. Prasser, “Development of Co-Current Air-Water Flow in a Vertical Pipe,” Int. J. Multiphase Flow 31, 1304-1328 (2005). · Zbl 1135.76484 · doi:10.1016/j.ijmultiphaseflow.2005.07.004
[24] D. Lucas, M. Beyer, L. Szalinski, and P. Schuetz, “A New Database on the Evolution of Two-Phase Flows in a Large Vertical Pipe,” Int. J. Therm. Sci. 49, 669-674 (2010). · doi:10.1016/j.ijthermalsci.2009.11.008
[25] R. Manceau and K. Hanjalic, “Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure,” Phys. Fluids 14(2), 744-754 (2002). · Zbl 1184.76343 · doi:10.1063/1.1432693
[26] L.I. Zaichik, “A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows,” Phys. Fluids 11, 1521-1534 (1999). · Zbl 1147.76544 · doi:10.1063/1.870015
[27] E. Loth, “Quasi-Steady Shape and Drag of Deformable Bubbles and Drops,” Int. J. Multiphase Flow 34(6), 523-546 (2008). · doi:10.1016/j.ijmultiphaseflow.2007.08.010
[28] D.A. Drew and R.T. Lahey, Jr., “The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow,” Int. J. Multiphase Flow 13, 113-121 (1987). · Zbl 0627.76014 · doi:10.1016/0301-9322(87)90011-5
[29] A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa, “Transverse Migration of Single Bubbles in Simple Shear Flows,” Chem. Eng. Sci. 57(11), 1949-1958 (2002).
[30] T. Hibiki and M. Ishii, “Lift Force in Bubbly Flow Systems,” Chem. Eng. Sci. 62, 6457-6474 (2007). · Zbl 1119.74440 · doi:10.1016/j.ces.2007.07.034
[31] S.P. Antal, R.T. Lahey, and J.F. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 17(5), 635-652 (1991). · Zbl 1134.76479 · doi:10.1016/0301-9322(91)90029-3
[32] M.J. Prince and H.W. Blanch, “Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns,” AIChE J. 36, 1485-1499 (1990). · doi:10.1002/aic.690361004
[33] W. Yao and C. Morel, “Volumetric Interfacial Area Prediction in Upward Bubbly Two-Phase Flow,” Int. J. Heat Mass Transfer 47, 307-328 (2004). · Zbl 1084.76075 · doi:10.1016/j.ijheatmasstransfer.2003.06.004
[34] M.A. Pakhomov and V.I. Terekhov, “Numerical Investigation of Flow and Heat Transfer in a Gas-Droplet Separated Turbulent Stream Using the Reynolds Stress Transfer Model,” Fluid Dynamics 48(5), 789-799 (2013). · Zbl 1287.76219 · doi:10.1134/S0015462813060100
[35] T. Hibiki, M. Ishii, and Z. Xiao, “Axial Interfacial Area Transport of Vertical Bubbly Flow,” Int. J. Heat Mass Transfer 44, 1869-1888 (2001). · doi:10.1016/S0017-9310(00)00232-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.