zbMATH — the first resource for mathematics

Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung. (English) Zbl 1323.81030
Summary: We present a Lagrangian which implies both necessary constraints and dynamical equations for position and spin of relativistic spin one-half particle. The model is consistent for any value of magnetic moment \(\mu\) and for arbitrary electromagnetic background. Our equations coincide with those of Frenkel in the approximation in which the latter have been obtained by Frenkel. Transition from approximate to exact equations yields two structural modifications of the theory. First, Frenkel condition on spin-tensor turns into the Pirani condition. Second, canonical momentum is no more proportional to velocity. Due to this, even when \(\mu = 1\) (Frenkel case), the complete and approximate equations predict different behavior of a particle. The difference between momentum and velocity means extra contribution to spin-orbit interaction. To estimate the contribution, we found exact solution to complete equations for the case of uniform magnetic field. While Frenkel electron moves around the circle, our particle experiences magnetic Zitterbewegung, that is oscillates in the direction of magnetic field with amplitude of order of Compton wavelength for the fast particle. Besides, the particle has dipole electric moment.

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81R25 Spinor and twistor methods applied to problems in quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics
Full Text: DOI arXiv
[1] Pryce, M. H.L., The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 195, 62, (1948) · Zbl 0032.23605
[2] Newton, T. D.; Wigner, E. P., Localized states for elementary systems, Rev. Mod. Phys., 21, 400, (1949) · Zbl 0036.26704
[3] Foldy, L. L.; Wouthuysen, S. A., On the Dirac theory of spin 1/2 particles and its non-relativistic limit, Phys. Rev., 78, 29, (1950) · Zbl 0039.22605
[4] van Holten, J. W., On the electrodynamics of spinning particles, Nucl. Phys. B, 356, 3, (1991)
[5] Kidder, L. E.; Will, C. M.; Wiseman, A. G., Phys. Rev. D, 47, R4183, (1993)
[6] Khriplovich, I. B.; Pomeransky, A. A., Gravitational interaction of spinning bodies, center-of-mass coordinate and radiation of compact binary systems, Phys. Lett. A, 216, 7, (1996)
[7] Khriplovich, I. B.; Pomeransky, A. A., Equations of motion of spinning relativistic particle in external fields, J. Exp. Theor. Phys., 86, 839, (1998)
[8] Pomeransky, A. A.; Sen’kov, R. A., Quadrupole interaction of relativistic quantum particle with external fields, Phys. Lett. B, 468, 251, (1999)
[9] Mukhopadhyay, B.; Chakrabarti, S. K., Solution of Dirac equation around a spinning black hole, Nucl. Phys. B, 582, 627, (2000) · Zbl 0983.83022
[10] Obukhov, Y. N.; Puetzfeld, D., Dynamics of test bodies with spin in de Sitter spacetime, Phys. Rev. D, 83, (2011), 044024
[11] Jaffe, R. L.; Manobar, A., Nucl. Phys. B, 337, 509, (1990)
[12] Wakamatsu, M., Eur. Phys. J. A, 44, 297, (2010)
[13] Selva, A.; Magnin, J.; Masperi, L., Bargmann-Michel-telegdi equation and one-particle relativistic approach, Nuovo Cimento B, 111, 7, 855-862, (1996)
[14] Rafanelli, K., Theory of the relativistic spinning particle: Hamiltonian formulation and world-line invariance, Phys. Rev. D, 30, 1707, (1984)
[15] Zahringer, F.; Kirchmair, G.; Gerritsma, R.; Solano, E.; Blatt, R.; Roos, C. F., Nature (London), 463, 68, (2010)
[16] Deriglazov, A. A., Classical-mechanical models without observable trajectories and the Dirac electron, Phys. Lett. A, 377, 13, (2012) · Zbl 1396.81093
[17] Field, J. H.; Picasso, E.; Combley, F., Tests of fundamental physical theories from measurements of free charged leptons, Sov. Phys. Usp., 22, 199, (1979), (in Russian)
[18] Miller, J. P.; de Rafael, E.; Roberts, B. L., Muon \((g - 2)\): experiment and theory, Rep. Prog. Phys., 70, 795, (2007)
[19] Hoffstaetter, G. H.; Dumas, H. S.; Ellison, J. A., Adiabatic invariance of spin-orbit motion in accelerators, Phys. Rev. ST Accel. Beams, 9, 014001, (2006)
[20] Karlovets, D. V., Electron with orbital angular momentum in a strong laser wave, Phys. Rev. A, 86, (2012), 062102
[21] Frenkel, J., Die elektrodynamik des rotierenden elektrons, Z. Phys., 37, 4-5, 243, (1926) · JFM 52.0960.06
[22] Frenkel, J., Spinning electrons, Nature, 117, 653, (1926)
[23] Bargmann, V.; Michel, L.; Telegdi, V. L., Phys. Rev. Lett., 2, 435, (1959)
[24] Corben, H. C., Classical and quantum theories of spinning particles, (1968), Holden-Day San Francisco
[25] Hanson, A. J.; Regge, T., The relativistic spherical top, Ann. Phys., 87, 2, 498, (1974)
[26] Berezin, F. A.; Marinov, M. S., Particle spin dynamics as the Grassmann variant of classical mechanics, Ann. Phys., 104, 336, (1977) · Zbl 0354.70003
[27] Galvao, C. A.P.; Teitelboim, C., Classical supersymmetric particles, J. Math. Phys., 21, 1863, (1980)
[28] Marnelius, R.; Martensson, U., Derivation of manifestly covariant quantum models for spinning relativistic particles, Nucl. Phys. B, 335, 395, (1990)
[29] Gitman, D. M., Path integrals and pseudoclassical description for spinning particles in arbitrary dimensions, Nucl. Phys. B, 488, 490, (1997) · Zbl 0925.81063
[30] Deriglazov, A. A.; Gitman, D. M., Classical description of spinning degrees of freedom of relativistic particles by means of commuting spinors, Mod. Phys. Lett. A, 14, 709, (1999)
[31] Balachandran, A. P.; Marmo, G.; Stern, A.; Skagerstam, B. S., Phys. Lett. B, 89, 199, (1980)
[32] Barut, A. O.; Thacker, W., Phys. Rev. D, 31, 1386, (1985)
[33] Barut, A. O.; Bracken, A. J., Zitterbewegung and the internal geometry of the electron, Phys. Rev. D, 23, 2454, (1981)
[34] Grassberger, P., Classical charged particles with spin, J. Phys. A, Math. Gen., 11, 7, 1221, (1978)
[35] Cognola, G.; Vanzo, L.; Zerbini, S.; Soldati, R., On the Lagrangian formulation of a charged spinning particle in an external electromagnetic field, Phys. Lett. B, 104, 67, (1981)
[36] Marcus, N., Kahler spinning particles, Nucl. Phys. B, 439, 583, (1995) · Zbl 0990.81649
[37] Skagerstam, B.-S.; Stern, A., Light-cone gauge versus proper-time gauge for massless spinning particles, Nucl. Phys. B, 294, 636, (1987)
[38] Vacaru, S. I.; Tintareanu-Mircea, O., Anholonomic frames, generalized Killing equations, and anisotropic Taub-NUT spinning spaces, Nucl. Phys. B, 626, 239, (2002) · Zbl 0989.83040
[39] Kosyakov, B. P., On the inert properties of particles in classical theory, Fiz. Elem. Chast. Atom. Yadra, Phys. Part. Nucl., 34, 808, (2003), Engl. transl.:
[40] Deriglazov, A. A., Variational problem for the Frenkel and the Bargmann-Michel-telegdi (BMT) equations, Mod. Phys. Lett. A, 28, 1250234, (2013) · Zbl 1260.81091
[41] Deriglazov, A. A.; Pupasov-Maksimov, A. M., Geometric constructions underlying relativistic description of spin on the base of non-Grassmann vector-like variable, SIGMA, 10, 012, (2014) · Zbl 1287.53018
[42] Deriglazov, A. A.; Pupasov-Maksimov, A. M., Lagrangian for Frenkel electron and Position’s non-commutativity due to spin · Zbl 1323.81030
[43] Feynman, R. P.; Gell-Mann, M., Theory of the Fermi interaction, Phys. Rev., 109, 193, (1958) · Zbl 0082.44202
[44] Feynman, R. P., Quantum electrodynamics, (1961), W. A. Benjamin · Zbl 0038.13302
[45] Ramirez, W. G.; Deriglazov, A. A.; Pupasov-Maksimov, A. M., Frenkel electron and a spinning body in a curved background, J. High Energy Phys., 1403, 109, (2014)
[46] Pirani, F. A.E., Acta Phys. Pol., 15, 389, (1956)
[47] Dixon, W. G., Nuovo Cimento, 34, 317, (1964)
[48] Tulczyjew, W., Acta Phys. Pol., 18, 393, (1959)
[49] Bordovitsyn, V. A.; Myagkii, A. N., Verification of the semiclassical method for an electron moving in a homogeneous magnetic field, Phys. Rev. E, 64, (2001), 046503
[50] Lobanov, A. E.; Pavlova, O. S., Solutions of the classical equation of motion for a spin in electromagnetic fields, Theor. Math. Phys., 121, 1691, (1999) · Zbl 0994.78003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.