×

Fluid-structure interaction on Cartesian grids: flow simulation and coupling environment. (English) Zbl 1323.76047

Bungartz, Hans-Joachim (ed.) et al., Fluid-structure interaction. Modelling, simulation, optimisation. Proceedings of the workshop, Hohenwart, Germany, October 2005. Berlin: Springer (ISBN 3-540-34595-7/pbk). Lecture Notes in Computational Science and Engineering 53, 233-269 (2006).
Summary: Despite their frequently supposed problems concerning the approximation of complicated and changing geometries, hierarchical Cartesian grids such as those defined by spacetrees have proven to be advantageous in many simulation scenarios. Probably their most important advantage is the simple, efficient, and flexible interface they offer and which allows for an elegant embedding of numerical simulations in some broader context, as it is encountered in a partitioned solution approach to coupled or multi-physics problems in general and to fluid-structure interaction in particular. For the latter, a flow solver, a structural solver, and a tool or library performing the data exchange and algorithmic interplay are required. Here, the main challenge still unsolved is to keep the balance between flexibility concerning the concrete codes used on the one hand and overall efficiency or performance on the other hand.
For the entire collection see [Zbl 1097.76002].

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

DiMEPACK; MpCCI
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bader, M., Bungartz, H.-J., Frank, A., and Mundani, R.-P.: Space Tree Structures for PDE Software. In: Sloot, P. M. A., Kenneth Tan, C. J., Dongarra, J. J., and Hoekstra, A. G. (eds.): Proceedings of the 2002 International Conference on Computational Science (2002) 662-671. · Zbl 1056.65107
[2] Becker-Lemgau, U., Hackenberg, M., Steckel, B., and Tilch, R.: Interpolation management in the GRISSLi coupling-interface for multidisciplinary simulations. In: Papailiou, K.D., Tsahalis, D., Periaux, J., Hirsch, C., and Pandol., M. (eds.): Computational Fluid Dynamics ’98, Proceedings of the 4th Eccomas Conference (1998) 1266-1271.
[3] Bernert, K.: \(\tau\)-Extrapolation–Theoretical Foundation, Numerical Experiment, and Application to the Navier-Stokes Equations. SIAM Journal on Scientific Computing 18 (1997) 460-478. · Zbl 0952.35095
[4] Blanke, C.: Kontinuitätserhaltende Finite-Element-Diskretisierung der Navier- Stokes-Gleichungen. Diploma thesis, Institut für Informatik, TU München (2004).
[5] Bletzinger, K.-U., Wüchner, R., and Kupzok, A.: Algorithmic Treatment of Shells and Free Form Membranes in FSI. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid-Structure Interaction, to appear in Springer’s LNCSE series. · Zbl 1323.74078
[6] Braess, D.: \(Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics\), Cambridge University Press (2001). · Zbl 0976.65099
[7] Bungartz, H.-J., Frank, A., Meier, F., Neunhoe.er, T., and Schulte, S.: Fluid structure interaction: 3d numerical simulation and visualization of a micropump. In: Bontoux, P., and Friedrich, R. (eds.): Computation and Visualization of three-Dimensional Vortical and Turbulent Flows (1998) 350-368.
[8] Bungartz, H.-J., Frank, A., Meier, F., Neunhoe.er, T., and Schulte, S.: Efficient treatment of complicated geometries and moving interfaces for CFD problems. In: Bungartz, H.-J., Durst, F., and Zenger, Ch. (eds.): High Performance Scienti.c and Engineering Computing, LNCSE 8 (1999) 113-123.
[9] Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745-762. · Zbl 0198.50103
[10] Dieminger, N.: Kriterien für die Selbstadaption cache-e.zienter Mehrgitteralgorithmen. Diploma thesis, Institut für Informatik, TU München (2005).
[11] Emans, M. and Zenger, C.: An efficient method for the prediction of the motion of individual bubbles. Int. J. of Computational Fluid Dynamics 19 (2005) 347- 356. · Zbl 1103.76380
[12] Farhat, C., Lesoinne, M., and Maman, N.: Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-.eld formulation, geometric conservation and distributed solution. Int. J. Num. Meth. in Fluids 21 (1995) 807-835. · Zbl 0865.76038
[13] Fraunhofer SCAI. MpCCI: Multidisciplinary Simulations through Code Coupling, Version 3.0. \(MpCCI Manuals\) [online], URL: http://​www.​scai.​fraunhofer.​ de/592.0.html [cited 19 Dez. 2005], (2005).
[14] Geller, S., Krafczyk, M., and Tölke, J.: Lattice-Boltzmann Method on quadtree type grids for Fluid-Structure Interaction. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid-Structure Interaction, to appear in Springer’s LNCSE series. · Zbl 1323.76079
[15] Gresho, P. M. and Sani, R. L.: \(Incompressible flow and the finite element method\), John Wiley&Sons Ltd, Chichester (1998). · Zbl 0941.76002
[16] Griebel, M.: \(Multilevelmethoden als Iterationsverfahren \"uber Erzeugendensystemen\). Habilitationsschrift, Teubner Skripten zur Numerik, Teubner, Stuttgart (1994). · Zbl 0823.65026
[17] Griebel, M., Dornseifer, Th., and Neunhoe.er, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction, SIAM Philadelphia, (1997).
[18] Griebel, M., and Zumbusch, G. W.: Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Computing 25 (1999) 827-843. · Zbl 0945.65138
[19] Griebel, M., and Zumbusch, G. W.: Hash based adaptive parallel multilevel methods with space-filling curves. In: Rollnik, H., and Wolf, D. (eds.): NIC Symposium 2001, NIC Series 9 (2002) 479-492.
[20] Günther, F.: Eine cache-optimale Implementierung der Finite-Elemente- Methode. Doctoral thesis, Institut für Informatik, TU München (2004). 268 M. Brenk et al.
[21] Günther, F., Krahnke, A., Langlotz, M., Mehl, M., Pögl, M., and Zenger, Ch.: On the Parallelization of a Cache-Optimal Iterative Solver for PDEs Based on Hierarchical Data Structures and Space-Filling Curves. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users Group Meeting Budapest, Hungary, September 2004, LNCS 3241 (2004) 425-429.
[22] Günther, F., Mehl, M., Pögl, M., and Zenger, Ch.: A cache-aware algorithm for PDEs on hierarchical data structures. In: Conference Proceedings PARA ’04, Kopenhagen, June 2004, LNCS 3732 (2005) 874-882.
[23] Günther, F., Mehl, M., Pögl, M., and Zenger, Ch.: A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM Journal on Scientific Computing (in review). · Zbl 1162.68406
[24] Herder, W.: Lastverteilung und parallelisierte Erzeugung von Eingabedaten für ein paralleles Cache-optimales Finite-Element-Verfahren. Diploma thesis, Institut für Informatik, TU München (2005).
[25] Kowarschik, M. and Weiß, C.: DiMEPACK - A Cache-Optimal Multigrid Library. In: Arabnia (ed.): Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Application (PDPTA 2001), Las Vegas, USA I (2001).
[26] Krahnke, A.: Adaptive Verfahren höherer Ordnung auf cache-optimalen Datenstrukturen für dreidimensionale Probleme. Doctoral thesis, Institut für Informatik, TU München (2005).
[27] Langlotz, M.: Parallelisierung eines Cache-optimalen 3D Finite-Element- Verfahrens. Diploma thesis, Institut für Informatik, TU München (2004).
[28] Mehl, M., Weinzierl, T., and Zenger, Ch.: A cache-oblivious self-adaptive full multigrid method. In: Special issue Copper Mountain Conference on Multigrid Methods 2005, Numerical Linear Algebra with Applications, (to appear). · Zbl 1174.65550
[29] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 1.1. \(MPI Documents\) [online], URL: http://​www.​mpi-forum.​ org/docs/docs.html [cited 19 Dez. 2005], (1995).
[30] Mundani, R.-P., and Bungartz, H.-J.: An Octree-Based Framework for Process Integration in Structural Engineering. In: Callaos, N., Lesso, W., and Sanchez, B. (eds.): Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and Informatics - Volume II (2004) 197-202.
[31] Mundani, R.-P., Bungartz, H.-J., Rank, E., Romberg, R., and Niggl, A.: E.- cient Algorithms for Octree-Based Geometric Modelling. In: Topping, B.H.V. (ed.): Proceedings of the 9th International Conference on Civil and Structural Engineering Computing (2003).
[32] Neckel, T.: Einfache 2D-Fluid-Struktur-Wechselwirkungen mit einer cacheoptimalen Finite-Element-Methode. Diploma thesis, Institut für Informatik, TU München (2005).
[33] Oden, J. T., Patra, A., and Feng, Y.: Domain decomposition for adaptive \(hp\) finite element methods. In: Keyes, D. E. and Xu, J. (eds.): Domain decomposition methods in scientific and engineering computing; Proceedings of the 7th Int. Conf. on Domain Decomposition, Contemporary Mathematics 180 (1994) 203-214.
[34] Patra, A. K., Long, J., and Laszlo., A.: Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations. In: Banerjee, P., Prasanna, V. K., and Sinha, B. P. (eds.): 6th Int. Conf. on High Performance Computing - HiPC’99, LNCS 1745 (1999) 359-363.
[35] Piperno, S., Farhat, C., and Larrouturou, B.: Partitioned procedures for the transient solution of coupled aeroelastic problems. Computer Methods in Applied Mechanics and Engineering 124 (1995) 79-112. · Zbl 1067.74521
[36] Pögl, M.: Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Probleme. Doctoral thesis, Institut für Informatik, TU München (2004).
[37] Roberts, S., Klyanasundaram, S., Cardew-Hall, M., and Clarke, W.: A key based parallel adaptive re.nement technique for finite element methods. In: Noye, J., Teubner, M., and Gill, A. (eds.): Proceedings Computational Techniques and Applications: CTAC ’97 (1998) 577-584.
[38] Sagan, H.: \(Space-Filling Curves\). Springer, New York (1994). · Zbl 0806.01019
[39] Scholz, D., Kollmannsberger, S., Düster, A., and Rank, E.: Thin solids for Fluid-Structure Interaction. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid- Structure Interaction, to appear in Springer’s LNCSE series. · Zbl 1323.74094
[40] Szabo, B., Düster, A., and Rank, E.: The \(p\)-version of the finite element method. In: Stein, E., de Borst, R., and Hughes, T.J.R. (eds.): Encyclopedia of Computational Mechanics, John Wiley&Sons (2004).
[41] Hron, J., and Turek, S.: Proposal for numerical benchmarking of Fluid- Structure Interaction between elastic object and laminar incompressible flow. In: Bungartz, H.-J., and Schäfer, M. (Eds.): Fluid-Structure Interaction, to appear in Springer’s LNCSE series. · Zbl 1323.76049
[42] Turek, S., and Schäfer, M.: Benchmark computations of laminar flow around cylinder. In: Hirschel, E. H. (ed.): Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics 52 (1996).
[43] Verstappen, R.W.C.P., and Veldman A.E.P.: Symmetry-Preserving Discretization of Turbulent Channel Flow. In: Breuer, M., Durst, F., and Zenger, Ch. (eds.): High Performance Scientific and Engineering Computing (2001) 107- 114.
[44] Weinzierl, T.: Eine cache-optimale Implementierung eines Navier-Stokes Lösers unter besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma thesis, Institut für Informatik, TU München (2005).
[45] Zumbusch, G. W.: Adaptive Parallel Multilevel Methods for Partial Differential Equations. Habilitationsschrift, Universität Bonn (2001).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.