Sanjeev, Arora; Kannan, Ravi Learning mixtures of arbitrary Gaussians. (English) Zbl 1323.68440 Proceedings of the thirty-third annual ACM symposium on theory of computing, STOC 2001. Hersonissos, Crete, Greece, July 6–8, 2001. New York, NY: ACM Press (ISBN 1-581-13349-9). 247-257 (2001). Cited in 16 Documents MSC: 68T05 Learning and adaptive systems in artificial intelligence 62E10 Characterization and structure theory of statistical distributions 68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.) 68Q25 Analysis of algorithms and problem complexity Keywords:clustering; Gaussians; learning; mixture distributions Citations:Zbl 0364.62022 PDF BibTeX XML Cite \textit{A. Sanjeev} and \textit{R. Kannan}, in: Proceedings of the thirty-third annual ACM symposium on theory of computing, STOC 2001. Hersonissos, Crete, Greece, July 6--8, 2001. New York, NY: ACM Press. 247--257 (2001; Zbl 1323.68440) Full Text: DOI OpenURL References: [1] [1]Y.Bartal,M.Charikar,andD.Raz.Approximating min-sumk-lusteringinmetrispaes.InProffdings ofthf33rdAnnualACMSymposiumonThforyof Computing,2001. [2] [2]M.Charikar,C.Chekuri,T.Feder,andR.Motwani. Inrementallusteringanddynamiinformation retrieval.InProffdingsofthf29thAnnualACM SymposiumonThforyofComputing,pages626.635, 1997. [3] [3]M.CharikarandS.Guha.Improvedombinatorial algorithmsforthefailityloationandk-median problems.InProffdingsofthf40thAnnual SymposiumonFoundationsofComputfrSifnf, pages378.388,1999. [4] [4]M.Charikar,S.Guha,E.Tardos,andD.Shmoys.A onstantfatorapproximationalgorithmforthe k-medianproblem.InProffdingsofthf31stAnnual ACMSymposiumonThforyofComputing,pages 1.10,1999. · Zbl 1346.68253 [5] [5]F.Chudak.Improvedapproximationalgorithmsfor unapaitatedfailityloation.InE.A.B. R.E.BixbyandR.Z.REios-Merado,editors, Proffdingsofthf6thConffrfnfonIntfgfr ProgrammingandOptimization,volume1412of LfturfNotfsinComputfrSifnf,pages180.194. Springer,1998. [6] [6]F.A.ChudakandD.Shmoys.Improved approximationalgorithmsfortheapaitatedfaility loationproblem.InProffdingsofthf10thAnnual ACM­SIAMSymposiumonDisrftfAlgorithms,pages S875.S876,1999. [7] [7]G.CornuEejols,G.L.Nemhauser,andL.A.Wolsey. DisrftfLoationThfory,hapterTheunapaitated failityloationproblem.ohnWileyandSons,In., NewYork,1990. [8] [8]S.R.Doddi,M..Marathe,S.S.Ravi,D.S.Taylor, andP.Widmayer.Approximationalgorithmsfor lusteringtominimizethesumofdiameters.In Proffdingsofthf7thSandinavianWorkshopon AlgorithmThfory,pages237.250,2000. [9] [9]M.DyerandA.M.Frieze.Asimpleheuristiforthe p-enterproblem.OpfrationsRfsfarhLfttfrs, 3:285.288,1985. [10] [10]S.GuhaandS.Khuller.Greedystrikesbak: Improvedfailityloationalgorithms.InProffdings ofthf9thAnnualACM­SIAMSymposiumonDisrftf Algorithms,pages649.657,1998. [11] [11]N.Guttman-BekandR.Hassin.Approximation algorithmsformin-sump-lustering.DisrftfApplifd Mathfmatis,89:125.142,1998. [12] [12]P.HansenandB.aumard.Clusteranalysisand mathematialprogramming.Mathfmatial Programming,pages191.215,1997. [13] [13]D.S.HohbaumandD.B.Shmoys.Abestpossible approximationalgorithmforthek-enterproblem. MathfmatisofOpfrationsRfsfarh,10:180.184, 1985. [14] [14]K.ainand.azirani.Primal-dualapproximation algorithmsformetrifailityloationandk-median problems.InProffdingsofthf40thAnnual SymposiumonFoundationsofComputfrSifnf, pages2.13,1999.toappearinournaloftheACM. [15] [15]O.KarivandS.L.Hakimi.Analgorithmiapproah tonetworkloationproblems,partii:p-medians. SIAMJournalofApplifdMathfmatis,37:539.560, 1979. [16] [16]M.Korupolu,C.G.Plaxton,andR.Rajaraman. Analysisofaloalsearhheuristiforfailityloation problems.InProffdingsofthf9thAnnual ACM­SIAMSymposiumonDisrftfAlgorithms,pages 1.10,1998. [17] [17].-H.Linand.S.itter.Approximationalgorithms forgeometrimedianproblems.Information ProfssingLfttfrs,44:245.249,1992. [18] [18]C.L.MonmaandS.Suri.Partitioningpointsand graphstominimizethemaximumorthesumof diameters.GraphThfory,Combinatorisand Appliations,pages880.912,1991. [19] [19]D.B.Shmoys,ETardos,andK.I.Aardal. E.Approximationalgorithmsforfailityloation problems.InProffdingsofthf29thAnnualACM SymposiumonThforyofComputing,pages265.274, 1997. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.