×

zbMATH — the first resource for mathematics

Multivariate extension principle and algebraic operations of intuitionistic fuzzy sets. (English) Zbl 1323.03082
Summary: This paper mainly focuses on multivariate extension of the extension principle of IFSs. Based on the Cartesian product over IFSs, the multivariate extension principle of IFSs is established. Furthermore, three kinds of representation of this principle are provided. Finally, a general framework of the algebraic operation between IFSs is given by using the multivariate extension principle.
MSC:
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Atanassov and S. Stoeva, “Intuitionistic fuzzy sets,” Polish Symposium on Interval and Fuzzy Mathematics, pp. 23-26, 1983. · Zbl 0597.03033
[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, 1986. · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[3] K. T. Atanassov, “More on intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 33, no. 1, pp. 37-45, 1989. · Zbl 0685.03037 · doi:10.1016/0165-0114(89)90215-7
[4] K. T. Atanassov, “Two operators on intuitionistic fuzzy sets,” Comptes Rendus de l’AcadĂ©mie Bulgare des Sciences, vol. 41, no. 5, pp. 35-38, 1988. · Zbl 0651.03040
[5] P. Burillo and H. Bustince, “Construction theorems for intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 84, no. 3, pp. 271-281, 1996. · Zbl 0903.04001 · doi:10.1016/0165-0114(95)00313-4
[6] H. Bustince and P. Burillo, “Structures on intuitionistic fuzzy relations,” Fuzzy Sets and Systems, vol. 78, no. 3, pp. 293-303, 1996. · Zbl 0875.04006 · doi:10.1016/0165-0114(96)84610-0
[7] H. Bustince, “Construction of intuitionistic fuzzy relations with predetermined properties,” Fuzzy Sets and Systems, vol. 109, no. 3, pp. 379-403, 2000. · Zbl 0951.03047 · doi:10.1016/S0165-0114(97)00381-3
[8] G. Beliakov, H. Bustince, D. P. Goswami, U. K. Mukherjee, and N. R. Pal, “On averaging operators for Atanassov’s intuitionistic fuzzy sets,” Information Sciences, vol. 181, no. 6, pp. 1116-1124, 2011. · Zbl 1215.03064 · doi:10.1016/j.ins.2010.11.024
[9] M. D. Cock, C. Cornelis, and E. E. Kerre, “Intuitionistic fuzzy relational images,” Studies in Computational Intelligence, vol. 2, pp. 129-145, 2005. · Zbl 1085.68169
[10] G. Deschrijver and E. E. Kerre, “On the composition of intuitionistic fuzzy relations,” Fuzzy Sets and Systems, vol. 136, no. 3, pp. 333-361, 2003. · Zbl 1028.03047 · doi:10.1016/S0165-0114(02)00269-5
[11] P. Grzegorzewski, “On possible and necessary inclusion of intuitionistic fuzzy sets,” Information Sciences, vol. 181, no. 2, pp. 342-350, 2011. · Zbl 1214.03038 · doi:10.1016/j.ins.2010.09.014
[12] V. Jani\vs, “t-norm based cuts of intuitionistic fuzzy sets,” Information Sciences, vol. 180, no. 7, pp. 1134-1137, 2010. · Zbl 1188.03036 · doi:10.1016/j.ins.2009.11.039
[13] J. Li, G. Deng, H. Li, and W. Zeng, “The relationship between similarity measure and entropy of intuitionistic fuzzy sets,” Information Sciences, vol. 188, pp. 314-321, 2012. · Zbl 1257.03082 · doi:10.1016/j.ins.2011.11.021
[14] H.W. Liu, “Basic theorems of intuitionistic fuzzy sets,” Journal of Mathematics for Technology, vol. 16, pp. 55-60, 2000 (Chinese). · Zbl 1003.20032
[15] B. P\?kala, “Properties of Atanassov’s intuitionistic fuzzy relations and Atanassov’s operators,” Information Sciences, vol. 213, pp. 84-93, 2012. · Zbl 1270.03112 · doi:10.1016/j.ins.2012.05.024
[16] L. Zhou, W. Z. Wu, and W. X. Zhang, “Properties of the cut-sets of intuitionistic fuzzy relations,” Fuzzy Systems and Mathematics, vol. 23, no. 2, pp. 110-115, 2009 (Chinese). · Zbl 1264.03120
[17] L. Atanassova, “On intuitionistic fuzzy versions of L. Zadeh’s extension principle,” Note on Intuitionistic Fuzzy Sets, vol. 12, no. 2, pp. 33-36, 2007.
[18] K. T. Atanassov, Intuitionistic Fuzzy Sets, Springer, Heidelberg, Germany, 1999. · Zbl 0939.03057
[19] V. Andonov, “On some properties of one Cartesian product over intuitionistic fuzzy sets,” Notes on Intuitionistic Fuzzy Sets, vol. 14, no. 1, pp. 12-19, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.