×

zbMATH — the first resource for mathematics

Optimistic value model of uncertain optimal control. (English) Zbl 1322.93064

MSC:
93C42 Fuzzy control/observation systems
91G10 Portfolio theory
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-0531(71)90038-X · Zbl 1011.91502
[2] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606
[3] DOI: 10.1109/TFUZZ.2002.800692
[4] DOI: 10.1109/TFUZZ.2008.924198
[5] Yang L., Int. J. Manage. Sci. 40 pp 619– (2012)
[6] DOI: 10.1016/j.apm.2012.04.046 · Zbl 1349.90373
[7] Li X., Int. J. Innov. Comput. I 8 pp 6569– (2012)
[8] Zhu Y., J. Uncertain Systems 3 pp 270– (2009)
[9] DOI: 10.1109/TSMCB.2010.2102015
[10] Wang B., China pp 560– (2009)
[11] DOI: 10.1016/j.camwa.2010.04.030 · Zbl 1198.93239
[12] Liu B., J. Uncertain Systems 2 pp 3– (2008)
[13] DOI: 10.1080/01969722.2010.511552 · Zbl 1225.93121
[14] Yao K., China pp 972– (2011)
[15] DOI: 10.1080/01969722.2012.707574 · Zbl 1331.93228
[16] Kang Y., Information 15 pp 3229– (2012)
[17] DOI: 10.1142/S0218488509005954 · Zbl 1180.28011
[18] DOI: 10.1007/s10700-010-9073-2 · Zbl 1196.34005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.