×

zbMATH — the first resource for mathematics

Optimal bounds for Seiffert mean in terms of one-parameter means. (English) Zbl 1322.26004
Summary: The authors present the greatest value \(r_1\) and the least value \(r_2\) such that the double inequality \(J_{r1}(a, b) < T(a, b) < J_{r2}(a, b)\) holds for all \(a, b > 0\) with \(a \neq b\), where \(T(a, b)\) and \(J_p(a, b)\) denote the Seiffert and \(p\)-th one-parameter means of two positive numbers \(a\) and \(b\), respectively.

MSC:
26E60 Means
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Alzer, “On Stolarsky’s mean value family,” International Journal of Mathematical Education in Science and Technology, vol. 20, no. 1, pp. 186-189, 1987. · Zbl 0671.26009
[2] H. Alzer, “Über eine einparametrige Familie von Mittelwerten,” Bayerische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte, pp. 1-9, 1987.
[3] H. Alzer, “Über eine einparametrige Familie von Mittelwerten. II,” Bayerische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte, pp. 23-29, 1988. · Zbl 0688.26009
[4] H. -J. Seiffert, “Aufgabe \beta 16,” Die Wurzel, vol. 29, pp. 221-222, 1995.
[5] F. Qi, “The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications,” Cubo Matemática Educacional, vol. 5, no. 3, pp. 63-90, 2003. · Zbl 1162.26317
[6] E. Neuman and J. Sándor, “On the Schwab-Borchardt mean,” Mathematica Pannonica, vol. 14, no. 2, pp. 253-266, 2003. · Zbl 1053.26015
[7] E. Neuman and J. Sándor, “On the Schwab-Borchardt mean. II,” Mathematica Pannonica, vol. 17, no. 1, pp. 49-59, 2006. · Zbl 1100.26011
[8] W.-S. Cheung and F. Qi, “Logarithmic convexity of the one-parameter mean values,” Taiwanese Journal of Mathematics, vol. 11, no. 1, pp. 231-237, 2007. · Zbl 1132.26324
[9] N.-G. Zheng, Z.-H. Zhang, and X.-M. Zhang, “Schur-convexity of two types of one-parameter mean values in n variables,” Journal of Inequalities and Applications, vol. 2007, Article ID 78175, 10 pages, 2007. · Zbl 1133.26008
[10] M.-K. Wang, Y.-F. Qiu, and Y.-M. Chu, “An optimal double inequality among the one-parameter, arithmetic and harmonic means,” Revue d’Analyse Numérique et de Théorie de l’Approximation, vol. 39, no. 2, pp. 169-175, 2010. · Zbl 1249.33016
[11] Y.-M. Chu, C. Zong, and G.-D. Wang, “Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean,” Journal of Mathematical Inequalities, vol. 5, no. 3, pp. 429-434, 2011. · Zbl 1225.26061
[12] Y.-M. Chu, M.-K. Wang, and W.-M. Gong, “Two sharp double inequalities for Seiffert mean,” Journal of Inequalities and Applications, vol. 2011, article 44, 2011. · Zbl 1275.26052
[13] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, and Y.-F. Qiu, “Sharp generalized Seiffert mean bounds for Toader mean,” Abstract and Applied Analysis, vol. 2011, Article ID 605259, 8 pages, 2011. · Zbl 1226.26017
[14] S.-W. Hou and Y.-M. Chu, “Optimal convex combination bounds of root-square and harmonic root-square means for Seiffert mean,” International Journal of Mathematical Analysis, vol. 5, no. 39, pp. 1897-1904, 2011. · Zbl 1245.26015
[15] M.-K. Wang, Y.-F. Qiu, and Y.-M. Chu, “Sharp bounds for Seiffert means in terms of Lehmer means,” Journal of Mathematical Inequalities, vol. 4, no. 4, pp. 581-586, 2010. · Zbl 1204.26053
[16] Y.-M. Chu, M.-K. Wang, and Y.-F. Qiu, “An optimal double inequality between power-type Heron and Seiffert means,” Journal of Inequalities and Applications, vol. 2010, Article ID 146945, 11 pages, 2010. · Zbl 1210.26021
[17] H.-N. Hu, C. Zong, and Y.-M. Chu, “Optimal one-parameter Gini mean bounds for the first and second Seiffert means,” Pacific Journal of Applied Mathematics, vol. 4, no. 1, pp. 27-33, 2011. · Zbl 1278.26031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.