# zbMATH — the first resource for mathematics

A map of dependencies among three-valued logics. (English) Zbl 1321.03037
Inf. Sci. 250, 162-177 (2013); corrigendum ibid. 256, 234-235 (2014).
Summary: Three-valued logics arise in several fields of computer science, both inspired by concrete problems (such as in the management of the null value in databases) and theoretical considerations. Several three-valued logics have been defined. They differ by their choice of basic connectives, hence also from a syntactic and proof-theoretic point of view. Different interpretations of the third truth value have also been suggested. They often carry an epistemic flavor. In this work, relationships between logical connectives on three-valued functions are explored. Existing theorems of functional completeness have laid bare some of these links, based on specific connectives. However we try to draw a map of such relationships between conjunctions, negations and implications that extend Boolean ones. It turns out that all reasonable connectives can be defined from a few of them and so all known three-valued logics appear as a fragment of only one logic. These results can be instrumental when choosing, for each application context, the appropriate fragment where the basic connectives make full sense, based on the appropriate meaning of the third truth-value.

##### MSC:
 03B50 Many-valued logic 06D35 MV-algebras
Full Text:
##### References:
 [1] Adamatzky, A., On dynamically non-trivial three-valued logics, Chaos, Solitons and Fractals, 18, 917-936, (2003) · Zbl 1073.37543 [2] Asenjo, F. G.; Tamburino, J., Logic of antinomies, Notre Dame Journal of Formal Logic, 16, 17-44, (1975) · Zbl 0246.02023 [3] Avron, A., On an implication connective of RM, Notre Dame Journal of Formal Logic, 27, 201-209, (1986) · Zbl 0613.03003 [4] Baaz, M., Infinite-valued Gödel logics with 0-1 projections and relativizations, (Hájek, P., GÖDEL96-Logical Foundations of Mathematics, Computer Science and Physics, Lecture Notes in Logic, vol. 6, (1996), Springer-Verlag Berlin), 23-33 · Zbl 0862.03015 [5] De Baets, B.; Fodor, J. C., Residual operators of uninorms, Soft Computing, 3, 89-100, (1999) [6] Banerjee, M.; Dubois, D., A simple modal logic for reasoning about revealed beliefs, (Sossai, C.; Chemello, G., Proc. ECSQARU 2009, Verona, Italy, LNAI 5590, (2009), Springer-Verlag), 805-816 · Zbl 1245.03019 [7] Belluce, L. P., Generalized fuzzy connectives on MV-algebras, Journal of Mathematical Analysis and Applications, 206, 485-499, (1997) · Zbl 0874.06010 [8] Belnap, N. D., A useful four-valued logic, (Dunn, J. M.; Epstein, G., Modern Uses of Multiple-Valued Logic, (1977), D. Reidel), 8-37 · Zbl 0424.03012 [9] Bochvar, D. A., On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus, History and Philosophy of Logic, 2, 87-112, (1981) · Zbl 0512.03004 [10] (Borowski, L., Selected Works of J. Łukasiewicz, (1970), North-Holland Amsterdam) [11] Cattaneo, G.; Ciucci, D., Shadowed sets and related algebraic structures, Fundamenta Informaticae, 55, 255-284, (2003) · Zbl 1036.03053 [12] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M., Algebraic structures related to many valued logical systems. part I: Heyting wajsberg algebras, Fundamenta Informaticae, 63, 4, 331-355, (2004) · Zbl 1090.03035 [13] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M., Algebraic structures related to many valued logical systems. part II: equivalence among some widespread structures, Fundamenta Informaticae, 63, 4, 357-373, (2004) · Zbl 1092.03035 [14] Cattaneo, G.; Giuntini, R.; Pilla, R., BZMV^{dm} and Stonian MV algebras (applications to fuzzy sets and rough approximations), Fuzzy Sets and Systems, 108, 201-222, (1999) · Zbl 0948.06008 [15] Cignoli, R., The class of Kleene algebras satisfying an interpolation property and Nelson algebras, Algebra Universalis, 23, 262-292, (1986) · Zbl 0621.06009 [16] D. Ciucci, D. Dubois, Truth-functionality, rough sets and three-valued logics, in: Proceedings ISMVL, 2010, pp. 98-103. [17] Ciucci, D.; Dubois, D., Relationships between connectives in three-valued logics, (Proc. IPMU Conference, Catania, CCIS, vol. 297, (2012), Springer), 633-642 · Zbl 1252.03044 [18] D. Ciucci, D. Dubois, Three-valued logics for incomplete information and epistemic logic, in: Proc. 13th European Conference on Logics in Artificial Intelligence (JELIA), Toulouse, France, LNCS, vol. 7519, 2012, pp. 147-159. · Zbl 1362.03021 [19] Codd, E. F., Extending the database relational model to capture more meaning, ACM Transactions on Database Systems, 4, 4, 397-434, (1979) [20] De Baets, B.; Fodor, J. C.; Ruiz-Aguilera, D.; Torrens, J., Idempotent uninorms on finite ordinal scales, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1-14, (2009) · Zbl 1178.03070 [21] D’Ottaviano, I. M.L.; da Costa, N. C.A., Sur un problème de jaśkowski, Comptes Rendus de l’Académie des Science, 270, 1349-1353, (1970) · Zbl 0198.01702 [22] Drewniak, J., Invariant fuzzy implications, Soft Computing, 10, 6, 506-513, (2006) · Zbl 1102.03026 [23] Dubois, D., On ignorance and contradiction considered as truth-values, Logic Journal of the IGPL, 16, 195-216, (2008) · Zbl 1139.03013 [24] Dubois, D.; Prade, H., Fuzzy-set-theoretic differences and inclusions and their use in the analysis of fuzzy equations, Control and Cybernetics, 13, 3, 129-146, (1984) · Zbl 0549.03020 [25] Dubois, D.; Prade, H., A theorem on implication functions defined from triangular norms, Stochastica VIII, 267-279, (1984) · Zbl 0581.03016 [26] Dubois, D.; Prade, H., Conditional objects as nonmonotonic consequence relationships, IEEE Transaction of Systems, Man, and Cybernetics, 24, 12, 1724-1740, (1994) · Zbl 1371.03041 [27] Dubois, D.; Prade, H., Possibility theory, probability theory and multiple-valued logics: a clarification, Annals of Mathematics and Artificial Intelligence, 32, 35-66, (2001) · Zbl 1314.68309 [28] Dubois, D.; Prade, H., An introduction to bipolar representations of information and preference, International Journal of Intelligent Systems, 23, 3, 866-877, (2008) · Zbl 1147.68708 [29] Fitting, M., A Kripke-Kleene semantics for logic programs, Journal of Logic Programming, 2, 4, 295-312, (1985) · Zbl 0589.68011 [30] Fodor, J. C., On fuzzy implications operators, Fuzzy Sets and Systems, 42, 293-300, (1991) · Zbl 0736.03006 [31] Fox, J., Motivation and demotivation of a four-valued logic, Notre Dame Journal of Formal Logic, 31, 1, 76-80, (1990) · Zbl 0709.03001 [32] Gentilhomme, M. Y., LES ensembles flous en linguistique, Cahiers de linguistique theoretique et applique, Bucarest, 47, 47-65, (1968) [33] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Dordrecht · Zbl 0937.03030 [34] Hardegree, G. M., Material implication in orthomodular (and Boolean) lattices, Notre Dame Journal of Modal Logic, 22, 163-182, (1981) · Zbl 0438.03060 [35] Hosoi, T., The axiomatization of the intermediate propositional systems sn of Gödel, J. Coll. Sci., Imp. Univ. Tokyo, 13, 183-187, (1996) · Zbl 0156.00802 [36] Jaśkowski, S., Propositional calculus for contradictory deductive systems, Studia Logica, 24, 143-160, (1969) · Zbl 0244.02004 [37] Jobe, W., Completeness and canonical forms in many-valued logics, The Journal of Symbolic Logic, 27, 409-422, (1962) · Zbl 0117.25301 [38] Kleene, S. C., Introduction to metamathematics, (1952), North-Holland Pub. Co Amsterdam · Zbl 0047.00703 [39] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Dordrecht · Zbl 0972.03002 [40] Konikowska, B., McCarthy algebras: a model of mccarthy’s logical calculus, Fundamenta Informaticae, 26, 2, 167-203, (1996) · Zbl 0847.03030 [41] Lawry, J.; Tang, Y., On truth-gaps, bipolar belief and the assertability of vague propositions, Artificial Intelligence, 20-41, (2012) · Zbl 1270.68316 [42] Mas, M.; Mayor, G.; Torrens, J., T-operators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7, 1, 31-50, (1999) · Zbl 1087.03515 [43] Mas, M.; Mayor, G.; Torrens, J., T-operators and uninorms on a finite totally ordered set, International Journal of Intelligent Systems, 14, 909-922, (1999) · Zbl 0948.68173 [44] Mas, M.; Monserrat, M.; Torrens, J., S-implications and R-implications on a finite chain, Kibernetika, 40, 3-20, (2004) · Zbl 1249.94094 [45] Mas, M.; Monserrat, M.; Torrens, J.; Trillas, E., A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 15, 1107-1121, (2007) [46] McCarthy, J., A basis for a mathematical theory of computation, (Braort, P.; Hirshberg, D., Computer Programming and Formal Systems, (1963), North-Holland) · Zbl 0203.16402 [47] Nelson, D., Constructible falsity, Journal of Symbolic Logic, 14, 16-26, (1949) · Zbl 0033.24304 [48] Pearce, D., Equilibrium logic, Annals of Mathematics and Artificial Intelligence, 47, 3-41, (2006) · Zbl 1117.03039 [49] Pedrycz, W., From fuzzy sets to shadowed sets: interpretation and computing, International Journal of Intelligent Systems, 24, 1, 48-61, (2009) · Zbl 1216.03061 [50] Priest, G., The logic of paradox, The Journal of Philosophical Logic, 8, 219-241, (1979) · Zbl 0402.03012 [51] Rosser, J.; Turquette, A., Many-Valued Logics, Studies in Logic and The Foundations of Mathematics, (1952), North-Holland Amsterdam · Zbl 0047.01503 [52] Sabo, M., On many valued implications, Tatra Mountain Mathematical Publication, 14, 161-167, (1998) · Zbl 0940.03061 [53] Sette, A. M., On propositional calculus P1, Mathematica Japonicae, 16, 173-180, (1973) · Zbl 0289.02013 [54] Smets, P.; Magrez, P., Implication in fuzzy logic, International Journal of Approximate Reasoning, 1, 327-347, (1987) · Zbl 0643.03018 [55] Smith, K. C., The prospects for multivalued logic: a technology and applications view, IEEE Transactions on Computers, 30, 9, 619-634, (1981) · Zbl 0463.94010 [56] Sobociński, B., Axiomatization of a partial system of three-valued calculus of propositions, Journal of Computing Systems, 1, 23-55, (1952) [57] Urquhart, A., Many-valued logic, (Gabbay, D. M.; Guenthner, F., Handbook of Philosophical Logic: Volume III, Alternatives to Classical Logic, (1986), Springer) · Zbl 0875.03054 [58] Vakarelov, D., Notes on N-lattices and constructive logic with strong negation, Studia Logica, 36, 109-125, (1977) · Zbl 0385.03055 [59] Vakarelov, D., Nelson’s negation on the base of weaker versions of intuitionistic negation, Studia Logica, 80, 393-430, (2005) · Zbl 1086.03026 [60] Walker, E. A., Stone algebras, conditional events, and three-valued logic, IEEE Transaction of Systems, Man, and Cybernetics, 24, 12, 1699-1707, (1994) · Zbl 1371.03034 [61] Y. Yao, Interval sets and interval-set algebras, in: Proceedings of the 8th IEEE International Conference on Cognitive Informatics, 2009, pp. 307-314. [62] Y. Yao, An outline of a theory of three-way decisions, in: Proceedings of RSCTC 2012, LNCS, vol. 7413, 2012, pp. 1-17. · Zbl 1404.68177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.