×

Equilibrium electro-deformation of a surfactant-laden viscous drop. (English) Zbl 1320.76124

Phys. Fluids 25, No. 9, Paper No. 092106, 19 p. (2013); note ibid. 27, No. 9. Paper No. 099901, 1 p. (2015).
Summary: We theoretically investigate the deformation of a viscous drop covered with non-diffusing insoluble surfactant under a uniform DC electric field. At equilibrium, surfactant immobilizes the spheroidal drop surface and completely suppresses the fluid flow. In this work we focus on the equilibrium electro-deformation of a surfactant-laden drop in the leaky dielectric framework by developing (1) a second-order small-deformation analysis and (2) a spheroidal model for a highly deformed (prolate or oblate) drop. Both models are compared against experimental data and numerical simulation results in the literature. Our analysis shows how the existence of equilibrium spheroidal drop depends on the permittivity ratio, conductivity ratio, surfactant coverage, and the elasticity number. Furthermore, the spheroidal model highlights that differences between surfactant effects, such as tip stretching and surface dilution effects, are greatly amplified at large surfactant coverage and high electric capillary number. These surfactant effects are well captured in the spheroidal model, but cannot be described in the second-order small-deformation theory.{
©2013 American Institute of Physics}

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76D07 Stokes and related (Oseen, etc.) flows
76D45 Capillarity (surface tension) for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Taylor, G., Studies in electrohydrodynamics. I. The circulation produced in a drop by electric field, Proc. R. Soc. London, Ser. A, 291, 159-166 (1966) · doi:10.1098/rspa.1966.0086
[2] Melcher, J. R.; Taylor, G. I., Electrohydrodynamics: A review of the role of interfacial shear stresses, Annu. Rev. Fluid Mech., 1, 111-146 (1969) · doi:10.1146/annurev.fl.01.010169.000551
[3] Allan, R. S.; Mason, S. G., Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops, Proc. R. Soc. London, Ser. A, 267, 45-61 (1962) · doi:10.1098/rspa.1962.0082
[4] Saville, D. A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model, Annu. Rev. Fluid Mech., 29, 27-64 (1997) · doi:10.1146/annurev.fluid.29.1.27
[5] Lac, E.; Homsy, G. M., Axisymmetric deformation and stability of a viscous drop in a steady electric field, J. Fluid Mech., 590, 239-264 (2007) · Zbl 1141.76481 · doi:10.1017/S0022112007007999
[6] Ha, J.-W.; Yang, S.-M., Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field, J. Fluid Mech., 405, 131-156 (2000) · Zbl 0953.76511 · doi:10.1017/S0022112099007223
[7] Zholkovskij, E. K.; Masliyah, J. H.; Czarnecki, J., An electrokinetic model of drop deformation in an electric field, J. Fluid Mech., 472, 1-27 (2002) · Zbl 1163.76453 · doi:10.1017/S0022112002001441
[8] Supeene, G.; Koch, C. R.; Bhattacharjee, S., Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media, J. Colloid Interface Sci., 318, 463-476 (2008) · doi:10.1016/j.jcis.2007.10.022
[9] Ajayi, O. O., A note on Taylor”s electrohydrodynamic theory, Proc. R. Soc. London, Ser. A, 364, 499-507 (1978) · Zbl 0394.76083 · doi:10.1098/rspa.1978.0214
[10] Bentenitis, N.; Krause, S., Droplet deformation in DC electric fields: The extended leaky dielectric model, Langmuir, 21, 6194-6209 (2005) · doi:10.1021/la0472448
[11] Zhang, J.; Zahn, J.; Lin, H., Transient solution for droplet deformation under electric fields, Phys. Rev. E, 87, 043008 (2013) · doi:10.1103/PhysRevE.87.043008
[12] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, 124-126 (1981)
[13] Sherwood, J. D., Breakup of fluid droplets in electric and magnetic fields, J. Fluid Mech., 188, 133-146 (1998) · Zbl 0642.76117 · doi:10.1017/S0022112088000667
[14] Dubash, N.; Mestel, A. J., Behavior of a conducting drop in a highly viscous fluid subject to an electric field, J. Fluid Mech., 581, 469-493 (2007) · Zbl 1119.76071 · doi:10.1017/S0022112007006040
[15] Ha, J.-W.; Yang, S.-M., Electrohydrodynamics and electrorotation of a drop with fluid less conducting than that of the ambient fluid, Phys. Fluids, 12, 764 (2000) · Zbl 1149.76398 · doi:10.1063/1.870333
[16] Collins, R. T.; Jones, J. J.; Harris, M. T.; Basaran, O. A., Electrohydrodynamic tip streaming and emission of charged drops from liquid cones, Nat. Phys., 4, 149-154 (2008) · doi:10.1038/nphys807
[17] Collins, R. T.; Sambath, K.; Harris, M. T.; Basaran, O. A., Scaling laws for the disintegration of electrified drops, Proc. Natl. Acad. Sci. U.S.A., 110, 4905-4910 (2013) · doi:10.1073/pnas.1213708110
[18] Taylor, G. I., Conical free surfaces and fluid interfaces, Proceedings of the 11th International Congress of Theoretical and Applied Mechanics (Munich 1964), 790-796 (1964)
[19] Brazier-Smith, P. R., Stability and shape of isolated and pairs of water drops in an electric field, Phys. Fluids, 14, 1 (1971) · doi:10.1063/1.1693258
[20] Brazier-Smith, P. R.; Jennings, S. G.; Latham, J., An investigation of the behaviour of drops and drop-pairs subjected to strong electric forces, Proc. R. Soc. London, Ser. A, 325, 363-376 (1971) · doi:10.1098/rspa.1971.0174
[21] Miksis, M., Shape of a drop in an electric field, Phys. Fluids, 24, 1967 (1981) · Zbl 0483.76115 · doi:10.1063/1.863293
[22] Basaran, O. A.; Scriven, L. E., Axisymmetric shapes and stability of charged drops in an external electric field, Phys. Fluids, 1, 799 (1989) · doi:10.1063/1.857377
[23] Suryo, R.; Basaran, O. A., Tip streaming from a lipid drop forming from a tue in a co-flowing outer fluid, Phys. Fluids, 18, 082102 (2006) · doi:10.1063/1.2335621
[24] Zhou, C.; Yue, P.; Feng, J. J., Formation of simple and compound drops in microfluidic devices, Phys. Fluids, 18, 092105 (2006) · doi:10.1063/1.2353116
[25] DeBruijn, R. A., Tipstreaming of drops in simple shear flows, Chem. Eng. Sci., 48, 277-284 (1993) · doi:10.1016/0009-2509(93)80015-I
[26] Anna, S. L.; Mayer, H. C., Microscale tipstreaming in a microfluidic flow focusing device, Phys. Fluids, 18, 121512 (2006) · Zbl 1146.76314 · doi:10.1063/1.2397023
[27] Booty, M. R.; Siegel, M., Steady deformation and tip-streaming of a slender bubble with surfactant in extensional flow, J. Fluid Mech., 544, 243-275 (2005) · Zbl 1083.76059 · doi:10.1017/S0022112005006622
[28] Notz, P. K.; Chen, A. U.; Basaran, O. A., Satellite drops: Unexpected dynamics and change of scaling during pinch-off, Phys. Fluids, 13, 549-552 (2001) · Zbl 1184.76399 · doi:10.1063/1.1343906
[29] Jin, F.; Gupta, N. R.; Stebe, K. J., The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant, Phys. Fluids, 18, 022103 (2006) · doi:10.1063/1.2172003
[30] Cui, Y.; Gupta, N. R., Surfactant effects on drop formation in co-flowing fluid streams, Colloids Surf., A, 393, 111 (2012) · doi:10.1016/j.colsurfa.2011.11.008
[31] Stone, H. A.; Leal, L. G., The effects of surfactants on drop deformation and breakup, J. Fluid Mech., 220, 161-186 (1990) · Zbl 0706.76124 · doi:10.1017/S0022112090003226
[32] Milliken, W. J.; Stone, H. A.; Leal, L. G., The effect of surfactant on the transient motion of Newtonian drops, Phys. Fluids, 5, 1, 69-79 (1993) · Zbl 0766.76095 · doi:10.1063/1.858790
[33] Wilkes, E. D.; Phillips, S. D.; Basaran, O. A., Computational and experimental analysis of dynamics of drop formation, Phys. Fluids, 11, 3577-3598 (1999) · Zbl 1149.76585 · doi:10.1063/1.870224
[34] Ambravaneswaran, B.; Wilkes, E. D.; Basaran, O. A., Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops, Phys. Fluids, 14, 2606 (2002) · Zbl 1185.76030 · doi:10.1063/1.1485077
[35] Gupta, N. R.; Nadim, A.; Haj-Hariri, H.; Borhan, A., A numerical study of the effect of insoluble surfactants on the stability of a viscous drop translating in a Hele-Shaw cell, J. Colloid Interface Sci., 252, 236 (2002) · doi:10.1006/jcis.2002.8441
[36] Takagi, S.; Matsumoto, Y., Surfactant effects on bubble motion and bubbly flows, Annu. Rev. Fluid Mech., 43, 615-636 (2011) · Zbl 1299.76277 · doi:10.1146/annurev-fluid-122109-160756
[37] Ha, J.-W.; Yang, S.-M., Effects of surfactant on the deformation and stability of a drop in a viscous fluid in an electric field, J. Colloid Interface Sci., 175, 369-385 (1995) · doi:10.1006/jcis.1995.1468
[38] Ha, J.-W.; Yang, S.-M., Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field, J. Colloid Interface Sci., 206, 195-204 (1998) · doi:10.1006/jcis.1998.5676
[39] Teigen, K. E.; Munkejord, S. T., Influence of surfactant on drop deformation in an electric field, Phys. Fluids, 22, 112104 (2010) · doi:10.1063/1.3504271
[40] Pawar, Y.; Stebe, K. J., Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants, Phys. Fluids, 8, 7, 1738-1751 (1996) · Zbl 1027.76539 · doi:10.1063/1.868958
[41] Stone, H. A., A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface, Phys. Fluids, 2, 111 (1990) · doi:10.1063/1.857686
[42] Wong, H.; Rumschitzki, D.; Maldarelli, C., On the surfactant mass balance at a deforming fluid interface, Phys. Fluids, 8, 11, 3203-3204 (1996) · Zbl 1027.76667 · doi:10.1063/1.869098
[43] Eggleton, C. D.; Pawar, Y. P.; Stebe, K. J., Insoluble surfactants on a drop in an extensional flow: A generalization of the stagnated surface limit to deforming interfaces, J. Fluid Mech., 385, 79-99 (1999) · Zbl 0959.76017 · doi:10.1017/S0022112098004054
[44] Velankar, S.; Zhou, H.; Jeon, H. K.; Macosko, C. W., CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops, J. Colloid Interface Sci., 272, 172-185 (2004) · doi:10.1016/j.jcis.2003.09.030
[45] Bazhlekov, I. B.; Anderson, P. D.; Meijer, H. E. H., Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow, J. Colloid Interface Sci., 298, 369-394 (2006) · doi:10.1016/j.jcis.2005.12.017
[46] Eggleton, C. D.; Tsai, T.-M.; Stebe, K. J., Tip streaming from a drop in the presence of surfactants, Phys. Rev. Lett., 87, 048302 (2001) · doi:10.1103/PhysRevLett.87.048302
[47] Ambravaneswaran, B.; Basaran, O. A., Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges, Phys. Fluids, 11, 5, 997-1015 (1999) · Zbl 1147.76307 · doi:10.1063/1.869972
[48] Craster, R. V.; Matar, O. K.; Papageorgiou, D. T., Pinchoff and satellite formation in surfactant covered viscous threads, Phys. Fluids, 14, 4, 1364-1376 (2002) · Zbl 1185.76093 · doi:10.1063/1.1449893
[49] Timmermans, M.-L. E.; Lister, J. R., The effect of surfactant on the stability of a liquid thread, J. Fluid Mech., 459, 289-306 (2002) · Zbl 1031.76020 · doi:10.1017/S0022112002008224
[50] Young, Y.-N.; Booty, M. R.; Siegel, M.; Li, J., Influence of surfactant solubility on the deformation and breakup of a bubble or capillary jet in a viscous fluid, Phys. Fluids, 21, 072105 (2009) · Zbl 1183.76595 · doi:10.1063/1.3176462
[51] Vlahovska, P. M.; Blawzdziewicz, J.; Loewenberg, M., Small-deformation theory for a surfactant-covered drop in linear flows, J. Fluid Mech., 624, 293-337 (2009) · Zbl 1171.76360 · doi:10.1017/S0022112008005417
[52] Vlahovska, P. M., On the rheology of a dilute emulsion in a uniform electric field, J. Fluid Mech., 670, 481-503 (2011) · Zbl 1225.76047 · doi:10.1017/S0022112010005379
[53] Schwalbe, J.; Vlahovska, P. M.; Miksis, M., Vesicle electrohydrodynamics, Phys. Rev. E, 83, 046309 (2011) · doi:10.1103/PhysRevE.83.046309
[54] Feng, J. Q.; Scott, T. C., A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field, J. Fluid Mech., 311, 289-326 (1996) · Zbl 0864.76096 · doi:10.1017/S0022112096002601
[55] Dassios, G.; Hadjinicolaou, M.; Coutelieris, F. A.; Payatakes, A. C., Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions, Int. J. Eng. Sci., 33, 1465-1490 (1995) · Zbl 0899.76118 · doi:10.1016/0020-7225(95)00010-U
[56] Tsukada, T.; Katayama, T.; Ito, Y.; Hozawa, M., Theoretical and experimental studies of circulations inside and outside a deformed drop under a uniform electric field, J. Chem. Eng. Jpn., 26, 698 (1993) · doi:10.1252/jcej.26.698
[57] Vizika, O.; Saville, D. A., The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields, J. Fluid Mech., 239, 1-21 (1992) · doi:10.1017/S0022112092004294
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.