×

zbMATH — the first resource for mathematics

An adaptive multiresolution method for ideal magnetohydrodynamics using divergence cleaning with parabolic-hyperbolic correction. (English) Zbl 1320.76080
Summary: We present an adaptive multiresolution method for the numerical simulation of ideal magnetohydrodynamics in two space dimensions. The discretization uses a finite volume scheme based on a Cartesian mesh and an explicit compact Runge-Kutta scheme for time integration. Harten’s cell average multiresolution allows to introduce a locally refined spatial mesh while controlling the error. The incompressibility of the magnetic field is controlled by using a Generalized Lagrangian Multiplier (GLM) approach with a mixed hyperbolic-parabolic correction. Different applications to two-dimensional problems illustrate the properties of the method. For each application CPU time and memory savings are reported and numerical aspects of the method are discussed. The accuracy of the adaptive computations is assessed by comparison with reference solutions computed on a regular fine mesh.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
HLLE
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Assous, F.; Degond, P.; Heintze, E.; Raviart, P. A.; Segre, J., On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 109, 2, 222-237, (1993) · Zbl 0795.65087
[2] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056, (2009) · Zbl 1280.76030
[3] Bellan, P. M., Fundamentals of plasma physics, (2006), Cambridge University Press
[4] Brackbill, J. U.; Barnes, D. C., Note: the effect of nonzero \(\operatorname{\nabla} \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 3, 426-430, (1980) · Zbl 0429.76079
[5] Cohen, A.; Kaber, S. M.; Müller, S.; Postel, M., Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comput., 72, 241, 183-225, (2003) · Zbl 1010.65035
[6] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[7] Dedner, A.; Rohde, C.; Wesenberg, M., A new approach to divergence cleaning in magnetohydrodynamic simulations, (Hou, T. Y.; Eitan, T., Hyperbolic Problems: Theory, Numerics, Applications, (2003), Springer Berlin), 509-518 · Zbl 1061.76036
[8] Deiterding, R.; Domingues, M. O.; Gomes, S. M.; Roussel, O.; Schneider, K., Adaptive multiresolution or adaptive mesh refinement: a case study for 2D Euler equations, ESAIM Proc., 29, 28-42, (2009) · Zbl 1301.76058
[9] Di Pierro, B., Méthode d’annulation de la divergence pour LES EDP hyperboliques application aux équations de la magnéto-hydrodynamique, (2009), Université de Provence Marseille, France, (unpublished, in French)
[10] Domingues, M. O.; Gomes, A. K.F.; Gomes, S. M.; Mendes, O.; Di Pierro, B.; Schneider, K., Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods, ESAIM Proc., 43, 95-107, (December 2013)
[11] Domingues, M. O.; Gomes, S. M.; Roussel, O.; Schneider, K., An adaptive multiresolution scheme with local time stepping for evolutionary pdes, J. Comput. Phys., 227, 8, 3758-3780, (2008) · Zbl 1139.65060
[12] Domingues, M. O.; Gomes, S. M.; Roussel, O.; Schneider, K., Space-time adaptive multiresolution methods for hyperbolic conservation laws: applications to compressible Euler equations, Appl. Numer. Math., 59, 2303-2311, (2009) · Zbl 1165.76031
[13] Domingues, M. O.; Gomes, S. M.; Roussel, O.; Schneider, K., Adaptive multiresolution methods, ESAIM Proc., 34, 1-96, (2011) · Zbl 1302.65185
[14] Domingues, M. O.; Roussel, O.; Schneider, K., An adaptive multiresolution method for parabolic PDEs with time-step control, Int. J. Numer. Methods Eng., 78, 652-670, (2009) · Zbl 1183.76816
[15] Freidberg, J. P., Ideal MHD, (2014), Cambridge University Press
[16] Gomes, A. K.F., Análise multirresolução adaptativa no contexto da resolução numérica de um modelo de magnetohidrodinâmica ideal, (2012-09-13), Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, Master’s thesis
[17] Harten, A., Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Commun. Pure Appl. Math., 48, 1305-1342, (1995) · Zbl 0860.65078
[18] Harten, A., Multiresolution representation of data: a general framework, SIAM J. Numer. Anal., 33, 3, 385-394, (1996)
[19] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35, (1983) · Zbl 0565.65051
[20] Komissarov, S. S.; Barkov, M.; Lyutikov, M., Tearing instability in relativistic magnetically dominated plasmas, Mon. Not. R. Astron. Soc., 374, 415-426, (2007)
[21] Mignone, A.; Tzeferacos, P., A second-order unsplit Godunov scheme for cell-centered MHD: the CTU-GLM scheme, J. Comput. Phys., 229, 6, 2117-2138, (2010) · Zbl 1303.76142
[22] Miyoshi, T.; Kusano, K., A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 208, 315-344, (2005) · Zbl 1114.76378
[23] Müller, S., Adaptive multiscale schemes for conservation laws, Lectures Notes in Computational Science and Engineering, vol. 27, (2003), Springer Heidelberg · Zbl 1016.76004
[24] Munz, C.-D.; Ommes, P.; Schneider, R.; Sonnendrücker, E.; Voss, U., Divergence corrections techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 2, 484, (2000) · Zbl 0970.78010
[25] Powell, K. G., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), (1994), NASA Langley Research Center Hampton, Technical report 1
[26] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptative upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309, (1999) · Zbl 0952.76045
[27] Rousell, O.; Schneider, K.; Tsigulin, A.; Bockhorn, H., A conservative fully adaptative multiresolution algorithm for parabolic pdes, J. Comput. Phys., 188, 493-523, (2003) · Zbl 1022.65093
[28] Roussel, O., Development of a 3D adaptive multiresolution algorithm for the resolution of parabolic PDEs. application to thermo-diffusive flame instabilities, (2003), Université de la Méditerranée Marseille, PhD thesis
[29] Tóth, G., The \(\operatorname{\nabla} \cdot \mathbf{B}\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 605-652, (2000) · Zbl 0980.76051
[30] Tóth, G.; van der Holst, B.; Sokolov, I. V.; De Zeeuw, D. L.; Gombosi, T. I.; Fang, F.; Manchester, W. B.; Meng, X.; Najib, D.; Powell, K. G.; Stout, Q. F.; Glocer, A.; Ma, Y.-J.; Opher, M., Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 3, 870-903, (2012)
[31] Tricco, T. S.; Price, D. J., Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics, J. Comput. Phys., 231, 21, 7214-7236, (2012)
[32] Xinwei, Y., A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22, 4, 913, (2009) · Zbl 1159.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.