×

zbMATH — the first resource for mathematics

Quasi conjunction, quasi disjunction, t-norms and t-conorms: probabilistic aspects. (English) Zbl 1320.68188
Summary: We make a probabilistic analysis related to some inference rules which play an important role in nonmonotonic reasoning. In a coherence-based setting, we study the extensions of a probability assessment defined on \(n\) conditional events to their quasi conjunction, and by exploiting duality, to their quasi disjunction. The lower and upper bounds coincide with some well known t-norms and t-conorms: minimum, product, Lukasiewicz, and Hamacher t-norms and their dual t-conorms. On this basis we obtain Quasi And and Quasi Or rules. These are rules for which any finite family of conditional events p-entails the associated quasi conjunction and quasi disjunction. We examine some cases of logical dependencies, and we study the relations among coherence, inclusion for conditional events, and p-entailment. We also consider the Or rule, where quasi conjunction and quasi disjunction of premises coincide with the conclusion. We analyze further aspects of quasi conjunction and quasi disjunction, by computing probabilistic bounds on premises from bounds on conclusions. Finally, we consider biconditional events, and we introduce the notion of an \(n\)-conditional event. Then we give a probabilistic interpretation for a generalized Loop rule. In an appendix we provide explicit expressions for the Hamacher t-norm and t-conorm in the unitary hypercube.

MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adams, E. W., The logic of conditionals, (1975), Reidel Dordrecht
[2] Ali, M. M.; Mikhail, N. N.; Haq, M., A class of bivariate distributions including the bivariate logistic, J. Multivariate Anal., 8, 405-412, (1978) · Zbl 0387.62019
[3] Alsina, C.; Frank, M. J.; Schweizer, B., Associative functions: triangular norms and copulas, (2006), World Scientific · Zbl 1100.39023
[4] Amarger, S.; Dubois, D.; Prade, H., Constraint propagation with imprecise conditional probabilities, (Proc. of the 7th Conf. on Uncertainty in Artificial Intelligence (UAI-91), (1991), Morgan Kaufmann), 26-34
[5] Amarger, S.; Dubois, D.; Prade, H., Handling imprecisely-known conditional probabilities, (Hand, D. J., AI and Computer Power: The Impact on Statistics, (1994), Chapman & Hall), 63-97
[6] Benferhat, S.; Dubois, D.; Prade, H., Nonmonotonic reasoning, conditional objects and possibility theory, Artif. Intell., 92, 259-276, (1997) · Zbl 1017.68539
[7] Biazzo, V.; Gilio, A., A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments, Internat. J. Approx. Reason., 24, 251-272, (2000) · Zbl 0995.68124
[8] Biazzo, V.; Gilio, A.; Lukasiewicz, T.; Sanfilippo, G., Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in system P, J. Appl. Non-Classical Logics, 12, 189-213, (2002) · Zbl 1038.03023
[9] Biazzo, V.; Gilio, A.; Lukasiewicz, T.; Sanfilippo, G., Probabilistic logic under coherence: complexity and algorithms, Ann. Math. Artif. Intell., 45, 35-81, (2005) · Zbl 1083.03027
[10] Biazzo, V.; Gilio, A.; Sanfilippo, G., Coherence checking and propagation of lower probability bounds, Soft Computing, 7, 310-320, (2003) · Zbl 1088.68797
[11] Biazzo, V.; Gilio, A.; Sanfilippo, G., On the checking of G-coherence of conditional probability bounds, Int. J. Uncertain. Fuzz. Knowl.-Based Syst., 11, Suppl.2, 75-104, (2003) · Zbl 1088.68797
[12] Biazzo, V.; Gilio, A.; Sanfilippo, G., Coherent conditional previsions and proper scoring rules, (Greco, S.; Bouchon-Meunier, B.; Coletti, G.; Fedrizzi, M.; Matarazzo, B.; Yager, R. R., Advances in Computational Intelligence, CCIS, vol. 300, (2012), Springer), 146-156 · Zbl 1252.62006
[13] Brozzi, A.; Capotorti, A.; Vantaggi, B., Incoherence correction strategies in statistical matching, Int. J. Approx. Reason., 53, 1124-1136, (2012) · Zbl 1318.62008
[14] Capotorti, A.; Lad, F.; Sanfilippo, G., Reassessing accuracy rates of Median decisions, Am. Statist., 61, 132-138, (2007)
[15] Capotorti, A.; Regoli, G.; Vattari, F., Correction of incoherent conditional probability assessments, Int. J. Approx. Reason., 51, 718-727, (2010) · Zbl 1205.68420
[16] Ciucci, D.; Dubois, D., Relationships between connectives in three-valued logics, (Greco, S.; Bouchon-Meunier, B.; Coletti, G.; Fedrizzi, M.; Matarazzo, B.; Yager, R., Advances on Computational Intelligence, CCIS, vol. 297, (2012), Springer), 633-642 · Zbl 1252.03044
[17] Coletti, G.; Gervasi, O.; Tasso, S.; Vantaggi, B., Generalized Bayesian inference in a fuzzy context: from theory to a virtual reality application, Comput. Statist. Data Anal., 56, 967-980, (2012) · Zbl 1241.62022
[18] Coletti, G.; Scozzafava, R., Probabilistic logic in a coherent setting, Trends in Logics, vol. 15, (2002), Kluwer Dordrecht · Zbl 1005.60007
[19] Coletti, G.; Scozzafava, R.; Vantaggi, B., Inferential processes leading to possibility and necessity, Inform. Sci., 132-145, (2012) · Zbl 1320.68181
[20] Császár, A., Sur la structure des espaces de probabilité conditionnelle, Acta Math. Acad. Sci. Hungarica, 6, 337-361, (1955) · Zbl 0067.10402
[21] Dombi, J., Towards a general class of operators for fuzzy systems, IEEE Trans. Fuzzy Syst., 16, 477-484, (2008)
[22] Dubois, D.; Prade, H., Conditional objects as nonmonotonic consequence relationships, IEEE Trans. Syst. Man Cybern., 24, 1724-1740, (1994) · Zbl 1371.03041
[23] Dubois, D.; Prade, H.; Toucas, J. M., Inference with imprecise numerical quantifiers, (Ras, Z.; Zemankova, M., Intelligent Systems: State of the Art and Future Directions, (1990), Ellis Horwood Ltd.), 57-72
[24] de Finetti, B., Does it make sense to speak of ‘good probability appraisers’?, (Good, I. J., The Scientist Speculates: An Anthology of Partly-Baked Ideas, (1962), Heinemann London), 357-364
[25] de Finetti, B., Probabilità composte e teoria delle decisioni, Rend. Mat., 23, 128-134, (1964) · Zbl 0129.32001
[26] B. de Finetti, Teoria delle probabilitÌa, Ed. Einaudi, 2 voll., Torino, 1970.
[27] Fugard, A. J.B.; Pfeifer, N.; Mayerhofer, B.; Kleiter, G. D., How people interpret conditionals: shifts toward the conditional event, J. Exp. Psychol. Learn. Mem. Cogn., 37, 635-648, (2011)
[28] Gale, D., The theory of linear economic models, (1960), McGraw-Hill NY · Zbl 0114.12203
[29] Gauffroy, C.; Barrouillet, P., Heuristic and analytic processes in mental models for conditionals: an integrative developmental theory, Develop. Rev., 29, 249-282, (2009)
[30] Gilio, A., Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva Della probabilità, Boll. Un. Mat. Ital., 4-B, 645-660, (1990)
[31] Gilio, A., C_{0}-coherence and extension of conditional probabilities, (Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; Smith, A. F.M., Bayesian Statistics 4, (1992), Oxford University Press), 633-640
[32] Gilio, A., Probabilistic consistency of knowledge bases in inference systems, (Clarke, M.; Kruse, R.; Moral, S., ECSQARU, LNCS, vol. 747, (1993), Springer), 160-167
[33] Gilio, A., Algorithms for precise and imprecise conditional probability assessments, (Coletti, G.; Dubois, D.; Scozzafava, R., Mathematical Models for Handling Partial Knowledge in Artificial Intelligence, (1995), Plenum Press New York), 231-254 · Zbl 0859.68042
[34] Gilio, A., Algorithms for conditional probability assessments, (Berry, D. A.; Chaloner, K. M.; Geweke, J. K., Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner, (1996), John Wiley NY), 29-39
[35] Gilio, A., Probabilistic reasoning under coherence in system P, Ann. Math. Artif. Intell., 34, 5-34, (2002) · Zbl 1014.68165
[36] A. Gilio, On Császár’s Condition in nonmonotonic reasoning, in: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning. Special Session: Uncertainty Frameworks in Non-Monotonic Reasoning, Whistler BC, Canada, June 6-8, 2004, pp. 180-188.
[37] Gilio, A., Generalizing inference rules in a coherence-based probabilistic default reasoning, Int. J. Approx. Reason., 53, 413-434, (2012) · Zbl 1242.68330
[38] Gilio, A.; Over, D., The psychology of inferring conditionals from disjunctions: a probabilistic study, J. Math. Psychol., 56, 118-131, (2012) · Zbl 1245.91022
[39] Gilio, A.; Sanfilippo, G., Quasi conjunction and p-entailment in nonmonotonic reasoning, (Borgelt, C.; Rodríguez, G.; Trutschnig, W.; Lubiano, M. A.; Gil, M.Á.; Grzegorzewski, P.; Hryniewicz, O., Combining soft computing and statistical methods in data analysis, AISC, vol. 7717, (2010), Springer), 321-328
[40] A. Gilio, G. Sanfilippo, Coherent conditional probabilities and proper scoring rules, in: F. Coolen, G. de Cooman, T. Fetz, M. Oberguggenberger (Eds.), ISIPTA’11: Proceedings of the Seventh International Symposium on Imprecise Probability: Theories and Applications, SIPTA, Innsbruck, 2011, pp. 189-198.
[41] Gilio, A.; Sanfilippo, G., Quasi conjunction and inclusion relation in probabilistic default reasoning, (Liu, W., Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNCS, vol. 6717, (2011), Springer), 497-508 · Zbl 1341.68255
[42] Gilio, A.; Sanfilippo, G., Probabilistic entailment in the setting of coherence: the role of quasi conjunction and inclusion relation, Int. J. Approx. Reason., 54, 513-525, (2013) · Zbl 1264.68174
[43] Gilio, A.; Sanfilippo, G., Conjunction, disjunction and iterated conditioning of conditional events, (Kruse, R.; Berthold, M. R.; Moewes, C.; Gil, M. A.; Grzegorzewski, P.; Hryniewicz, O., Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Advances in Intelligent Systems and Computing, vol. 190, (2013), Springer), 399-407 · Zbl 1364.60007
[44] Godo, L.; Marchioni, E., Coherent conditional probability in a fuzzy logic setting, Logic J. IGPL, 14, 457-481, (2006) · Zbl 1117.03031
[45] Goodman, I. R.; Nguyen, H. T., Conditional objects and the modeling of uncertainties, (Gupta, M. M.; Yamakawa, T., Fuzzy Computing, (1988), North-Holland), 119-138
[46] Grabisch, M.; Marichal, J. L.; Mesiar, R.; Pap, E., Aggregation functions, (2009), Cambridge University Press
[47] Grabisch, M.; Marichal, J. L.; Mesiar, R.; Pap, E., Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes, Inform. Sci., 181, 23-43, (2011) · Zbl 1206.68299
[48] Grabisch, M.; Marichal, J. L.; Mesiar, R.; Pap, E., Aggregation functions: means, Inform. Sci., 181, 1-22, (2011) · Zbl 1206.68298
[49] Hamacher, H., Über logische aggregationen nicht-binär explizierter entscheidungskriterien, (1978), Rita G. Fischer Verlag
[50] Kern-Isberner, G., Conditionals in nonmonotonic reasoning and belief revision, LNCS, vol. 2087, (2001), Springer · Zbl 0978.03014
[51] Kleiter, G., Ockham’s razor in probability logic, (Kruse, R.; Berthold, M. R.; Moewes, C.; Gil, M. A.; Grzegorzewski, P.; Hryniewicz, O., Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Advances in Intelligent Systems and Computing, vol. 190, (2013), Springer), 409-417 · Zbl 1336.03031
[52] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Springer · Zbl 0972.03002
[53] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms: basic notions and properties, (Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, (2005), Elsevier), 17-60 · Zbl 1078.03022
[54] Kraus, S.; Lehmann, D.; Magidor, M., Nonmonotonic reasoning, preferential models and cumulative logics, Artif. Intell., 44, 167-207, (1990) · Zbl 0782.03012
[55] Lad, F., Operational subjective statistical methods, (1996), Wiley · Zbl 0862.62005
[56] F. Lad, G. Sanfilippo, G. Agró, Completing the logarithmic scoring rule for assessing probability distributions, AIP Conf. Proc. 1490 (2012) 13-30.
[57] Lukasiewicz, T.; Straccia, U., Managing uncertainty and vagueness in description logics for the semantic web, J. Web Semantics, 6, 291-308, (2008)
[58] Menger, K., Statistical metrics, Proc. Natl. Acad. Sci. USA, 28, 535-537, (1942) · Zbl 0063.03886
[59] Nelsen, R. B., An introduction to copulas, Lecture Notes in Statistics, vol. 139, (1999), Springer · Zbl 0909.62052
[60] Pfeifer, N.; Kleiter, G. D., Inference in conditional probability logic, Kybernetika, 42, 391-404, (2006) · Zbl 1249.68262
[61] Pfeifer, N.; Kleiter, G. D., Framing human inference by coherence based probability logic, J. Appl. Logic, 7, 206-217, (2009) · Zbl 1179.03025
[62] Sanfilippo, G., From imprecise probability assessments to conditional probabilities with quasi additive classes of conditioning events, (Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI-12), (2012), AUAI Press Corvallis, Oregon), 736-745
[63] Schweizer, B.; Sklar, A., Associative functions and statistical triangle inequalities, Publ. Math., 8, 169-186, (1961) · Zbl 0107.12203
[64] Scozzafava, R.; Vantaggi, B., Fuzzy inclusion and similarity through coherent conditional probability, Fuzzy Sets Syst., 160, 292-305, (2009) · Zbl 1184.03054
[65] Thimm, M.; Kern-Isberner, G.; Fisseler, J., Relational probabilistic conditional reasoning at maximum entropy, (Liu, W., Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNCS, vol. 6717, (2011), Springer), 447-458 · Zbl 1341.68270
[66] Tweney, R. D.; Doherty, M. E.; Kleiter, G. D., The pseudodiagnosticity trap: should participants consider alternative hypotheses?, Thinking & Reasoning, 16, 332-345, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.