zbMATH — the first resource for mathematics

A variant of \(K\)-theory and topological T-duality for real circle bundles. (English) Zbl 1320.19001
Let \(X\) be a topological space, \(\pi:E\to X\) a principal circle bundle, and \(h\in H^3(E,\mathbb{Z})\) a cohomology class. For each pair \((E,h)\) as above, there exist another pair \((E',h')\) such that the Chern classes of \(E,E'\) satisfy \(c_1(E)=\pi'_*h', c_1(E')=\pi_*h,\) and moreover the twisted \(K\)-theory groups satisfy \(K^{h+n}(E)\simeq K^{h'+n-1}(E')\). The pair \((E',h')\) is unique up to isomorphism. This is a version of “topological T-duality”, cf., e.g. [U. Bunke and T. Schick, Rev. Math. Phys. 17, No. 1, 77–112 (2005; Zbl 1148.55009)].
The present paper extends the topological T-duality to the category of spaces endowed with a \(\mathbb{Z}/2\mathbb{Z}\)-action, Real circle bundles, \(\mathbb{Z}/2\mathbb{Z}\)-twisted cohomology, and twisted equivariant \(K\)-theory. (a Real circle bundle is a principal \(\mathbb{S}^1\)-bundle over a \(\mathbb{Z}/2\mathbb{Z}\)-space with involution \(\tau\), together with a lift of \(\tau\) to an involution \(\tau\) of the total space \(E\) such that \(\tau(\xi u)=\tau(\xi)u^{-1}\) for every \(\xi\in E\) and \(u\in \mathbb{S}^1\)).
Previous results were obtained by D. Baraglia [Pure Appl. Math. Q. 10, No. 3, 367–438 (2014; Zbl 1318.19009)] for free actions. The T-duality statement from this paper, extending Baraglia’s result, was independently proved with different methods by V. Mathai and J. Rosenberg [“T-duality for circle bundles via noncommutative geometry”, Adv. Theor. Math. Phys. (to appear), arXiv:1306.4198].

19L50 Twisted \(K\)-theory; differential \(K\)-theory
55N91 Equivariant homology and cohomology in algebraic topology
Full Text: DOI arXiv
[1] Atiyah, M.F., K-theory and reality, Quart. J. Math. Oxford Ser. (2), 17, 367-386, (1966) · Zbl 0146.19101
[2] Atiyah, M.F., Hopkins, M.: A variant of K-theory: \(K\)_{±}. In: Topology, Geometry and Quantum Field Theory, pp. 5-17. London Mathematical Society Lecture Note Series, vol. 308. Cambridge University Press, Cambridge (2004) · Zbl 1090.19004
[3] Baraglia, D.: Conformal Courant algebroids and orientifold T-duality. Int. J. Geom. Methods Mod. Phys. 10(2), 1250084 (2013) · Zbl 1264.53074
[4] Baraglia, D.: Topological T-duality for general circle bundles. Pure Appl. Math. Q. (to appear) arXiv:1105.0290 · Zbl 1318.19009
[5] Bouwknegt, P.; Evslin, J.; Mathai, V., T-duality: topology change from H-flux, Comm. Math. Phys., 249, 383-415, (2004) · Zbl 1062.81119
[6] Bouwknegt, P., Evslin, J., Mathai, V.: Topology and H-flux of T-dual manifolds. Phys. Rev. Lett. 92(18), 181601 (2013) · Zbl 1267.81264
[7] Braun, V., Stefanski, B. jr.: Orientifolds and K-theory.arXiv:hep-th/0206158 · Zbl 1272.81166
[8] Brown, K.S. Cohomology of groups. Corrected reprint of the 1982 original. In: Graduate Texts in Mathematics, vol. 87. Springer, New York (1994) · Zbl 0199.26202
[9] Brylinski, J.-L.: Gerbes on complex reductive Lie groups. arXiv:math/0002158 · Zbl 0118.26104
[10] Bunke, U.; Schick, T., On the topology of \(T\)-duality, Rev. Math. Phys., 17, 77-112, (2005) · Zbl 1148.55009
[11] Freed, D.S.; Hopkins, M.J.; Teleman, C., Loop groups and twisted K-theory I, J. Topol., 4, 737-798, (2011) · Zbl 1241.19002
[12] Freed, D.S., Hopkins, M.J., Teleman, C.: Consistent orientation of moduli spaces. In: The Many Facets of Geometry, pp. 395-419. Oxford University Press, Oxford (2010) · Zbl 1257.19004
[13] Gaberdiel M.R., Stefański B. Jr.: Dirichlet branes on orbifolds. Nuclear Phys. B 578(1-2), 58-84 (2000) · Zbl 0976.81064
[14] Gawȩdzki, K.; Suszek, R.R.; Waldorf, K., Bundle gerbes for orientifold sigma models, Adv. Theor. Math. Phys., 15, 621-687, (2011) · Zbl 1280.81089
[15] Grothendieck, A., Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2), 9, 119-221, (1957) · Zbl 0118.26104
[16] Dabholkar, A.: Lectures on orientifolds and duality.arXiv:hep-th/9804208 · Zbl 0237.14003
[17] Deligne, P., Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. No., 44, 5-77, (1974) · Zbl 0237.14003
[18] Distler, J., Freed, D.S., Moore, G.W.: Orientifold précis. In: Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, pp. 159-172. Proceedings of Symposos Pure Mathematics, vol. 83. American Mathematical Society, Providence, RI (2011) · Zbl 1248.81160
[19] Donovan, P.; Karoubi, M., Graded Brauer groups and \(K\)-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. No., 38, 5-25, (1970) · Zbl 0207.22003
[20] Doran, C., Mendez-Diez, S., Rosenberg, J.: T-duality For Orientifolds and Twisted KR-theory. Lett. Math. Phys. doi:10.1007/s11005-014-0715-0 · Zbl 1304.19004
[21] Hattori, A.; Yoshida, T., Lifting compact group actions in fiber bundles, Japan. J. Math. (N.S.), 2, 13-25, (1976) · Zbl 0346.57014
[22] Hausmann, J.-C.; Holm, T.; Puppe, V., Conjugation spaces, Algebr. Geom. Topol., 5, 923-964, (2005) · Zbl 1081.55006
[23] Hori, K., D-branes, \(T\)-duality, and index theory, Adv. Theor. Math. Phys., 3, 281-342, (1999) · Zbl 0964.81057
[24] Kahn, B., Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Comm. Algebra, 15, 695-711, (1987) · Zbl 0615.57012
[25] Lawson, H.B. Jr., Michelsohn, M.-L.: Spin geometry. In: Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton, NJ (1989)
[26] Mathai, V., Rosenberg, J.: T-duality for circle bundles via noncommutative gometry. Adv. Theor. Math. Phys. (to appear) arXiv:1306.4198 · Zbl 1308.81149
[27] Mathai, V.; Wu, S., Topology and flux of T-dual manifolds with circle actions, Comm. Math. Phys., 316, 279-286, (2012) · Zbl 1257.81059
[28] May, J.P.: Equivariant homotopy and cohomology theory. With contributions by M. Cole, G. Comezaña, S. Costenoble, A.D. Elmendorf, J.P.C. Greenlees, L.G. Lewis, Jr., R.J. Piacenza, G. Triantafillou, S. Waner. In: CBMS Regional Conference Series in Mathematics, vol. 91. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1996) · Zbl 1148.53057
[29] May, J.P.: Simplicial objects in algebraic topology. Reprint of the 1967 original. In: Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1992) · Zbl 0925.81174
[30] Mendez-Diez, S.; Rosenberg, J., \(K\)-theoretic matching of brane charges in S- and U-duality, Adv. Theor. Math. Phys., 16, 1591-1618, (2012) · Zbl 1272.81166
[31] Moutuou, E.M.: Twisted groupoid KR-Theory, Ph.D. thesis, Université de Lorraine-Metz, and Universität Paderborn (2012)
[32] Pitsch, W.; Scherer, J., Conjugation spaces and equivariant Chern classes, Bull. Belg. Math. Soc. Simon Stevin, 20, 77-90, (2013) · Zbl 1278.57034
[33] Rosenberg, J., Continuous-trace algebras from the bundle theoretic point of view, J. Aust. Math. Soc. Ser. A, 47, 368-381, (1989) · Zbl 0695.46031
[34] Rosenberg, J., The Künneth theorem in equivariant \(K\)-theory for actions of a cyclic group of order 2, Algebr. Geom. Topol., 13, 1225-1241, (2013) · Zbl 1275.19007
[35] Schreiber, U.; Schweigert, C.; Waldorf, K., Unoriented WZW models and holonomy of bundle gerbes, Comm. Math. Phys., 274, 31-64, (2007) · Zbl 1148.53057
[36] Segal, G., Equivariant \(K\)-theory, Inst. Hautes Études Sci. Publ. Math. No., 34, 129-151, (1968) · Zbl 0199.26202
[37] Sen, A., Duality and orbifolds, Nuclear Phys. B, 474, 361-375, (1996) · Zbl 0925.81174
[38] Spanier, E. H.: Algebraic Topology. Corrected reprint. Springer, New York-Berlin (1981)
[39] Vafa, C.: Lectures on Strings and Dualities. arXiv:hep-th/9702201
[40] Witten, E.: D-branes and \(K\)-theory. J. High Energy Phys. 12, Paper 19 (electronic) (1998) · Zbl 1278.57034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.