×

zbMATH — the first resource for mathematics

Complete permutation polynomials over finite fields of odd characteristic. (English) Zbl 1320.11121
Summary: In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these polynomials are also investigated.

MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbary, A.; Wang, Q., A generalized Lucas sequence and permutation binomials, Proc. Am. Math. Soc., 134, 15-22, (2005) · Zbl 1137.11355
[2] Akbary, A.; Wang, Q., On polynomials of the form \(x^r f(x^{(q - 1) / l})\), Int. J. Math. Math. Sci., (2007), Article ID 23408
[3] Cao, X.; Hu, L., New methods for generating permutation polynomials over finite fields, Finite Fields Appl., 17, 493-503, (2011) · Zbl 1245.11114
[4] Charpin, P.; Kyureghyan, G. M., Cubic monomial bent functions: a subclass of \(\mathcal{M}\), SIAM J. Discrete Math., 22, 2, 650-665, (2008) · Zbl 1171.11062
[5] Dickson, L. E., The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11, 65-120, (1896) · JFM 28.0135.03
[6] Ding, C.; Xiang, Q.; Yuan, J.; Yuan, P., Explicit classes of permutation polynomials over \(\mathbb{F}_{3^{3 m}}\), Sci. China Ser. A, 53, 639-647, (2009) · Zbl 1215.11113
[7] Dobbertin, H., One-to-one highly nonlinear power functions on \(\mathit{GF}(2^n)\), Appl. Algebra Eng. Commun. Comput., 9, 2, 139-152, (1998) · Zbl 0924.94026
[8] Hermite, C., Sur LES fonctions de sept lettres, C. R. Acad. Sci. Paris, 57, 750-757, (1863)
[9] Hou, X., Two classes of permutation polynomials over finite fields, J. Comb. Theory, Ser. A, 118, 448-454, (2011) · Zbl 1230.11146
[10] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite Fields Appl., 13, 58-70, (2007) · Zbl 1107.11048
[11] Leander, N. G., Monomial bent functions, IEEE Trans. Inf. Theory, 52, 2, 738-743, (2006) · Zbl 1161.94414
[12] Lidl, R.; Niederreiter, H., Finite fields, Encycl. Math. Appl., (1997), Cambridge University Press
[13] Lidl, R.; Mullen, G. L.; Turnwald, G., Dickson polynomials, Pitman Monogr. Surv. Pure Appl. Math., vol. 65, (1993), Longman Scientific and Technical Harlow · Zbl 0823.11070
[14] Niederreiter, H.; Robinson, K. H., Complete mappings of finite fields, J. Aust. Math. Soc. A, 33, 2, 197-212, (1982) · Zbl 0495.12018
[15] Payne, S. E., A complete determination of translation ovoids in finite Desarguesian planes, Atti Accad. Naz. Lincei Rend., 51, 8, 328-331, (1971) · Zbl 0238.50018
[16] Tu, Z.; Zeng, X.; Hu, L., Several classes of complete permutation polynomials, Finite Fields Appl., 25, 182-193, (2014) · Zbl 1284.05012
[17] Tu, Z.; Zeng, X.; Hu, L.; Li, C., A class of binomial permutation polynomials, preprint
[18] Wan, D.; Lidl, R., Permutation polynomials of the form \(x^r h(x^{(q - 1) / d})\) and their group structure, Monatshefte Math., 112, 149-163, (1991) · Zbl 0737.11040
[19] Yuan, Y.; Tong, Y.; Zhang, H., Complete mapping polynomials over finite field \(\mathbb{F}_{16}\), (Arithmetic of Finite Fields, Lect. Notes Comput. Sci., vol. 4547, (2007), Springer Berlin), 147-158 · Zbl 1213.11193
[20] Zieve, M. E., On some permutation polynomials over \(\mathbb{F}_q\) of the form \(x^r h(x^{(q - 1) / d})\), Proc. Am. Math. Soc., 137, 2209-2216, (2009) · Zbl 1228.11177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.