×

zbMATH — the first resource for mathematics

Two classes of permutation polynomials having the form \((x^{2^m}+x+\delta)^s+x\). (English) Zbl 1320.11120
Summary: In this paper, we propose two classes of permutation polynomials having the form \((x^{2^m} + x + \delta)^s + x\) over the finite field \(\mathbb{F}_{2^{2 m}}\).

MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berlekamp, E. R.; Rumsey, H.; Solomon, G., On the solution of algebraic equations over finite fields, Inf. Control, 10, 6, 553-564, (1967) · Zbl 0166.04803
[2] Helleseth, T.; Zinoviev, V., New Kloosterman sums identities over \(\mathbb{F}_{2^m}\) for all m, Finite Fields Appl., 9, 2, 187-193, (2003) · Zbl 1081.11077
[3] Li, N.; Helleseth, T.; Tang, X., Further results on a class of permutation polynomials over finite fields, Finite Fields Appl., 22, 16-23, (2013) · Zbl 1285.05004
[4] Niho, Y., Multi-valued cross-corrfunctions between two maximal linear recursive sequences, (1972), University of Southern California Los Angeles, PhD dissertation
[5] Yuan, J.; Ding, C., Four classes of permutation polynomials of \(\mathbb{F}_{2^m}\), Finite Fields Appl., 13, 4, 869-876, (2007) · Zbl 1167.11045
[6] Yuan, J.; Ding, C.; Wang, H.; Pieprzyk, J., Permutation polynomials of the form \((x^p - x + \delta)^s + L(x)\), Finite Fields Appl., 14, 2, 482-493, (2008) · Zbl 1211.11136
[7] Yuan, P.; Ding, C., Permutation polynomials over finite fields from a powerful lemma, Finite Fields Appl., 17, 6, 560-574, (2011) · Zbl 1258.11100
[8] Yuan, P.; Ding, C., Further results on permutation polynomials over finite fields, Finite Fields Appl., 27, 88-103, (2014) · Zbl 1297.11148
[9] Zeng, X.; Zhu, X.; Hu, L., Two new permutation polynomials with the form \((x^{2^k} + x + \delta)^s + x\) over \(\mathbb{F}_{2^n}\), Appl. Algebra Eng. Commun. Comput., 21, 2, 145-150, (2010) · Zbl 1215.11116
[10] Zha, Z.; Hu, L., Two classes of permutation polynomials over finite fields, Finite Fields Appl., 18, 4, 781-790, (2012) · Zbl 1288.11111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.