zbMATH — the first resource for mathematics

Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission. (English) Zbl 1319.92057
Summary: A deterministic ordinary differential equation model for the dynamics of malaria transmission that explicitly integrates the demography and life style of the malaria vector and its interaction with the human population is developed and analyzed. The model is different from standard malaria transmission models in that the vectors involved in disease transmission are those that are questing for human blood. Model results indicate the existence of nontrivial disease free and endemic steady states, which can be driven to instability via a Hopf bifurcation as a parameter is varied in parameter space. Our model therefore captures oscillations that are known to exist in the dynamics of malaria transmission without recourse to external seasonal forcing. Additionally, our model exhibits the phenomenon of backward bifurcation. Two threshold parameters that can be used for purposes of control are identified and studied, and possible reasons why it has been difficult to eradicate malaria are advanced.

92D30 Epidemiology
PDF BibTeX Cite
Full Text: DOI
[1] Hawass, Z.; Gad, Y.Z.; Ismail, S., Ancestry and pathology in King tutankhamun’s family, Jama, 303, 7, 638, (2010)
[2] World Health Organisation, The World Malaria Report 2009, WHO Press (2010,) Available at http://www.who.int/malaria/world_malaria_report_2010/en/index.html. Assessed August 27, 2011.
[3] Mace, K.E.; Lynch, M.F.; MacArthur, J.R.; Kachur, S.P.; Slutsker, L.; Steketee, R.W.; Popovic, T., The opportunity for and challenges to malaria eradication, morbidity & mortality weekly report, Centers for dis. control prevention (CDC), 60, 15, 476, (2011)
[4] Sherman, I.W., Malaria: parasite biology, pathogenesis, and protection, (1998), ASM Press
[5] Ross, R., The prevention of malaria, (1911), John Murray London
[6] Macdonald, G., The analysis of infection rates in diseases in which superinfection occurs, Trop. dis. bull., 47, 907, (1950)
[7] Dietz, K.; Molineaux, L.; Thomas, A., A malaria model tested in the africa savanna, Bull WHO, 50, 347, (1974)
[8] Bailey, T.J.N., The mathematical theory of infectious diseases and its application, (1975), Griffin London, second ed.
[9] Aron, J.L., Mathematical modeling of immunity to malaria, Math. biosci., 90, 385, (1988) · Zbl 0651.92018
[10] Aron, J.L.; May, R.M., The population dynamics of malaria, ()
[11] Koella, J.C., On the use of mathematical models of malaria transmission, Acta trop., 49, 1, (1991)
[12] Ngwa, G.A.; Shu, W.S., A mathematical model for endemic malaria with variable human and mosquito populations, Math. comput. model., 32, 7, 747, (2000) · Zbl 0998.92035
[13] Ngwa, G.A.; Ngonghala, C.N.; Wilson, N.B.S., A model for endemic malaria with delay and variable populations, J. cameroon acad. sci., 1, 3, 169, (2001)
[14] Chitnis, N.; Cushing, J.M.; Hyman, J.M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. appl. math., 67, 1, 24, (2006) · Zbl 1107.92047
[15] Chitnis, N.; Hyman, J.M.; Cushing, J.M., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. math. biol., 70, 1272, (2008) · Zbl 1142.92025
[16] Teboh-Ewungkem, M.I.; Podder, C.N.; Gumel, A.B., Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics, Bull. math. biol., 72, 1, 63, (2010) · Zbl 1184.92033
[17] Teboh-Ewungkem, M.I.; Yuster, T., A within-vector mathematical model of plasmodium falciparum and implications of incomplete fertilization on optimal gametocyte sex ratio, J. theory biol., 264, 273, (2010) · Zbl 1406.92065
[18] Teboh-Ewungkem, M.I.; Wang, M., Male fecundity and optimal gametocyte sex ratios for P. falciparum during incomplete fertilization, J. theory biol., 307, 183, (2012) · Zbl 1337.92232
[19] Labadin, J.; Kon, C.M.L.; Juan, S.F.S., Deterministic malaria transmission model with acquired immunity, Proc. world congress eng. comput. sci., 2, 779, (2009)
[20] Wyse, Ana Paula P.; Bevilacqua, L.; Rafikovd, M., Simulating malaria model for different treatment intensities in a variable environment, Ecol. model., 206, 322, (2007)
[21] Giles, H.M.; Warrel, D.A., Bruce – chwatt’s essential malariology, (2002), Hodder Arnold Publication London
[22] Martens, P.; Kovats, R.S.; Nijhof, S.; de Vries, P.; Levermore, M.J.T.; Bradley, D.J.; Cox, J.; McMichael, A.J., Climate change and future populations at risk of malaria, Global environ. change, 9, S89, (1999)
[23] Zhou, G.; Minakawa, N.; Githeko, A.K.; Yan, G., Association between climate variability and malaria epidemics in the east african highlands, Proc. natl. acad. sci., 101, 2375, (2004)
[24] Patz, J.A.; Olson, S.H., Malaria risk and temperature: influences from global climate change and local land use practices, Proc. natl. acad. sci., 103, 15, 5635, (2006)
[25] Reiter, P., Global warming and malaria: knowing the horse before hitching the cart, Malaria J., 7, Suppl 1: S3, (2008)
[26] Gallup, J.L.; Sachs, J.D., The economic burden of malaria, Am. J. trop. med. hyg., 64, 85, (2001)
[27] Nourridine, S.; Teboh-Ewungkem, M.I.; Ngwa, G.A., A mathematical model of the population dynamics of disease transmitting vectors with spatial consideration, J. biol. dynam., 1751, (2011) · Zbl 1219.92054
[28] Staedke, S.G.; Nottingham, E.W.; Cox, J.; Kamya, M.R.; Rosenthal, P.J.; Dorsey, G., Proximity to mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of ugandan children, Am. J. trop. med. hyg., 69, 3, 244, (2003)
[29] Teboh-Ewungkem, M.I., Malaria control: the role of local communities as seen through a mathematical model in a changing population-cameroon, Advances in disease epidemiology, (2009), Nova Science Publishers, (Chapter 4, pp. 103-140)
[30] Nedelman, J., Introductory review some new thoughts about some old malaria models, Math. biosci., 73, 2, 159, (1985) · Zbl 0567.92020
[31] McCall, P.J.; Kelly, D.W., Learning and memory in disease vectors, Res. update. trends parasito, 18, 10, 429, (2002)
[32] Ngwa, G.A., On the population dynamics of the malaria vector, Bull. math. biol., 68, 8, 2161, (2006) · Zbl 1296.92214
[33] Ngwa, G.A.; Niger, A.M.; Gumel, A.B., Mathematical assessment of the role of non-linear birth and maturation delay in the population dynamics of the malaria vector, Appl. math. comput., 217, 3286, (2010) · Zbl 1203.92041
[34] Ricker, W.E., Stock and recruitment, Can. J. fisheries aquatic sci., 11, 559, (1954)
[35] R.J.H. Beverton, S.J. Holt, On the dynamics of exploited fish populations, vol. 19 of 2, Fisheries investment, London, Her Majesty’s Stationary Office, 1981.
[36] Cook, K.; van den Driessche, P.; Zou, X., Interaction of maturation delay and nonlinear birth in population and epidemic models, J. math. biol., 39, 332, (1999) · Zbl 0945.92016
[37] Brännström, Å.; Sumpter, D.J.T., The role of competition and clustering in population dynamics, Proc. R. soc. B, 272, 2065, (2005) · Zbl 1334.92445
[38] Anderson, R.M.; May, R.M., Population biology of infectious diseases: part I, Nature, 280, 361, (1979)
[39] Anderson, R.M., Mathematical and statistical study of the epidemiology of HIV, Aids, 3, 6, 333, (1989)
[40] Thieme, H.R., Epidemic and demorgraphic interaction in the spread of a potentially fatal disease in a growing population, Math. biosci., 111, 99, (1992)
[41] Hale, H.K., Ordinary differential equations, (1969), John Wiley & Sons New York · Zbl 0186.40901
[42] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. biosci., 180, 29, (2002) · Zbl 1015.92036
[43] Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. math. biol., 28, 365, (1990) · Zbl 0726.92018
[44] Huang, W.; Cook, K.L.; Castillo-Chavez, C., Stability and bifurcation for a multiple-group model for the dynamics of hiv/aids transmission, SIAM J. appl. math., 52, 3, 835, (1992) · Zbl 0769.92023
[45] Dushoff, J.; Huang, W.; Castillo-Chavez, C., Backward bifurcations and catastrophe in simple models of fatal diseases, J. math. biol., 36, 36:227, (1998) · Zbl 0917.92022
[46] Krisb-Zeleta, C.M.; Velasco-Hernandez, J.X., A simple vaccination model with multiple endemic states, Math. biosci., 164, 2, 183, (2001)
[47] van den Driessche, P.; Watmough, J., Reproductive numbers and sub-threshold endemic equilibria for compartment models of disease trsmission, Math. biosci., 180, 29, (2001)
[48] Castillo-Chavez, C.; Song, B., Dynamical models of tuberculosis and their applications, Math. biosci. eng., 1, 2, 361, (2004) · Zbl 1060.92041
[49] Central Intelligence Agency, Country Comparison: Life expectancy at birth, The world fact book (Assessed September 2010).
[50] Ruan, J.C.B.S.; Xiao, D., On the delayed ross – macdonald model for malaria transmission, Bull. math. biol., 70, 4, 1098, (2008) · Zbl 1142.92040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.