×

The average tree permission value for games with a permission tree. (English) Zbl 1319.91049

Summary: In the literature, various models of games with restricted cooperation can be found. In those models, instead of allowing for all subsets of the set of players to form, it is assumed that the set of feasible coalitions is a subset of the power set of the set of players. In this paper, we consider such sets of feasible coalitions that follow from a permission structure on the set of players, in which players need permission to cooperate with other players. We assume the permission structure to be an oriented tree. This means that there is one player at the top of the permission structure, and for every other player, there is a unique directed path from the top player to this player. We introduce a new solution for these games based on the idea of the Average Tree value for cycle-free communication graph games. We provide two axiomatizations for this new value and compare it with the conjunctive permission value.

MSC:

91A43 Games involving graphs
91A12 Cooperative games
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Algaba, E., Bilbao, J.M., van den Brink, R., Jiménez-Losada, A.: Cooperative games on antimatroids. Discret. Math. 282, 1-15 (2004) · Zbl 1086.91007 · doi:10.1016/j.disc.2003.10.019
[2] Béal, S., Rémila, E., Solal, P.: Rooted tree solutions for tree games. Eur. J. Oper. Res. 203, 404-408 (2010) · Zbl 1177.91055 · doi:10.1016/j.ejor.2009.07.023
[3] Béal, S., Lardon, A., Rémila, E., Solal, P.: The average tree solution for multi-choice forest games. Ann. Oper. Res. 196, 27-51 (2012) · Zbl 1259.91027 · doi:10.1007/s10479-012-1150-1
[4] Bergantinõs, G., Lorenzo-Freire, S.: A characterization of optimistic weighted shapley rules in minimum cost spanning tree problems. Econ. Theory 35, 523-538 (2008) · Zbl 1148.91004 · doi:10.1007/s00199-007-0248-1
[5] Bilbao, J.M.: Cooperative Games on Combinatorial Structures. Kluwer, Dordrecht (2000) · doi:10.1007/978-1-4615-4393-0
[6] Bolton, P., Dewatripont, M.: The firm as a communication network. Q. J. Econ. 109, 809-839 (1994) · Zbl 0826.90072 · doi:10.2307/2118349
[7] Brânzei, R., Fragnelli, V., Tijs, S.: Tree-connected peer group situations and peer group games. Math. Methods Oper. Res. 55, 93-106 (2002) · Zbl 1052.91013 · doi:10.1007/s001860200176
[8] Casajus, A.: Collusion, Quarrel, and the Banzhaf value. Int. J. Game Theory (2013) (forthcoming). doi:10.1007/s00182-012-0364-4 · Zbl 1336.91013
[9] Chun, Y.: No-envy in queueing problems. Econ. Theory 29, 151-162 (2006) · Zbl 1103.90325 · doi:10.1007/s00199-005-0011-4
[10] Chwe, M.S.-Y.: Communication and coordination in social networks. Rev. Econ. Stud. 67, 1-16 (2000) · Zbl 0956.91012 · doi:10.1111/1467-937X.00118
[11] Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50, 1431-1452 (1982) · Zbl 0494.94007 · doi:10.2307/1913390
[12] Demange, G.: On group stability in hierarchies and networks. J. Political Econ. 112, 754-778 (2004) · doi:10.1086/421171
[13] Derks, J., Peters, H.: A shapley value for games with restricted coalitions. Int. J. Game Theory 21, 351-360 (1993) · Zbl 0788.90088 · doi:10.1007/BF01240150
[14] Dessein, W.: Authority and communication in organizations. Rev. Econ. Stud. 69, 811-838 (2002) · Zbl 1040.91094 · doi:10.1111/1467-937X.00227
[15] Dewatripont, M., Tirole, J.: Modes of communication. J. Political Econ. 113, 1217-1238 (2005) · doi:10.1086/497999
[16] Dilworth, R.P.: Lattices with unique irreducible decompositions. Ann. Math. 41, 771-777 (1940) · JFM 66.0101.05 · doi:10.2307/1968857
[17] Dong, B., Ni, D., Wang, Y.: Sharing a polluted river network. Environ. Resour. Econ. 53, 367-387 (2012) · doi:10.1007/s10640-012-9566-2
[18] Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geometrica Dedicata 19, 247-270 (1985) · Zbl 0577.52001
[19] Faigle, U., Grabisch, M.: Values for Markovian coalition processes. Econ. Theory 51, 505-538 (2012) · Zbl 1261.91004
[20] Faigle, U., Kern, W.: The shapley value for cooperative games under precedence constraints. Int. J. Game Theory 21, 249-266 (1992) · Zbl 0779.90078
[21] Gilles, R.P., Owen, G.: Cooperative Games and Disjunctive Permission Structures. Department of Economics, Virginia Polytechnic Institute and State University, Blacksburg, VA (1994)
[22] Gilles, R.P., Owen, G., van den Brink, R.: Games with permission structures: the conjunctive approach. Int. J. Game Theory 20, 277-293 (1992) · Zbl 0764.90106 · doi:10.1007/BF01253782
[23] Graham, D.A., Marshall, R.C., Richard, J.F.: Differential payments within a bidder coalition and the shapley value. Am. Econ. Rev. 80, 493-510 (1990)
[24] Haller, H.: Collusion properties of values. Int. J. Game Theory 23, 261-281 (1994) · Zbl 0864.90138 · doi:10.1007/BF01247318
[25] Harsanyi, JC; Tucker, AW (ed.); Luce, RD (ed.), A bargaining model for cooperative n-person games, 325-355 (1959), Princeton · Zbl 0084.36501
[26] Hart, O., Moore, J.: On the design of hierarchies: coordination versus specialization. J. Political Econ. 113, 675-702 (2005) · doi:10.1086/431794
[27] Herings, P.J.J., van der Laan, G., Talman, A.J.J.: The Average Tree solution for cycle-free graph games. Games and Economic Behavior 62, 77-92 (2008) · Zbl 1135.91316 · doi:10.1016/j.geb.2007.03.007
[28] Herings, P.J.J., van der Laan, G., Talman, A.J.J., Yang, Z.: The Average Tree solution for cooperative games with communication structure. Games Econ. Behav. 68, 626-633 (2010) · Zbl 1198.91067 · doi:10.1016/j.geb.2009.10.002
[29] Li, L., Li, X.: The covering values for acyclic digraph games. Int. J. Game Theory 40, 697-718 (2011) · Zbl 1233.91049 · doi:10.1007/s00182-010-0264-4
[30] Ligett, T.M., Lippman, S.A., Rumelt, R.P.: The asymptotic shapley value for a simple market game. Econ. Theory 40, 333-338 (2009) · Zbl 1173.91372 · doi:10.1007/s00199-008-0374-4
[31] Littlechild, S.C., Owen, G.: A simple expression for the shapley value in a special case. Manage. Sci. 20, 370-372 (1973) · Zbl 0307.90095 · doi:10.1287/mnsc.20.3.370
[32] Malawaski, M.: Equal treatment, symmetry and Banzhaf value axiomatizations. Int. J. Game Theory 31, 47-67 (2002) · Zbl 1083.91025 · doi:10.1007/s001820200107
[33] Maniquet, F.: A characterization of the shapley value in queueing problems. J. Econ. Theory 109, 90-103 (2003) · Zbl 1032.91020 · doi:10.1016/S0022-0531(02)00036-4
[34] Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2, 225-229 (1977) · Zbl 0402.90106 · doi:10.1287/moor.2.3.225
[35] Ni, D., Wang, Y.: Sharing a polluted river. Games and Economic Behavior 60, 176-186 (2007) · Zbl 1155.91449 · doi:10.1016/j.geb.2006.10.001
[36] Shapley, LS; Kuhn, HW (ed.); Tucker, AW (ed.), A value for \[n\] n-person games, 307-317 (1953), Princeton
[37] Tauman, Y., Watanabe, N.: The shapley value of a patent licensing game: the asymptotic equivalence to non-cooperative results. Econ. Theory 30, 135-149 (2007) · Zbl 1172.91306 · doi:10.1007/s00199-005-0047-5
[38] van den Brink, R.: An axiomatization of the disjunctive permission value for games with a permission structure. Int. J. Game Theory 26, 27-43 (1997) · Zbl 0872.90118 · doi:10.1007/BF01262510
[39] van den Brink, R.: Efficiency and collusion neutrality in cooperative games and networks. Games and Economic Behavior 76, 344-348 (2012a) · Zbl 1274.91057
[40] van den Brink, R.: On hierarchies and communication. Soc. Choice Welf. 39, 721-735 (2012b) · Zbl 1287.91022 · doi:10.1007/s00355-011-0557-y
[41] van den Brink, R., Gilles, R.P.: Axiomatizations of the conjunctive permission value for games with permission structures. Games Econ. Behav. 12, 113-126 (1996) · Zbl 0846.90130 · doi:10.1006/game.1996.0008
[42] van den Brink, R., van der Laan, G., Vasil’ev, V.: Component efficient solutions in line-graph games with applications. Econ. Theory 33, 349-364 (2007) · Zbl 1180.91040 · doi:10.1007/s00199-006-0139-x
[43] van den Brink, R., Katsev, I., van der Laan, G.: Axiomatizations of two types of shapley values for games on union closed systems. Econ. Theory 47, 175-188 (2011) · Zbl 1213.91038 · doi:10.1007/s00199-010-0530-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.