×

Robust estimation and inference for heavy tailed GARCH. (English) Zbl 1319.62192

Summary: We develop two new estimators for a general class of stationary GARCH models with possibly heavy tailed asymmetrically distributed errors, covering processes with symmetric and asymmetric feedback like GARCH, Asymmetric GARCH, VGARCH and Quadratic GARCH. The first estimator arises from negligibly trimming QML criterion equations according to error extremes. The second imbeds negligibly transformed errors into QML score equations for a Method of Moments estimator. In this case, we exploit a sub-class of redescending transforms that includes tail-trimming and functions popular in the robust estimation literature, and we re-center the transformed errors to minimize small sample bias. The negligible transforms allow both identification of the true parameter and asymptotic normality. We present a consistent estimator of the covariance matrix that permits classic inference without knowledge of the rate of convergence. A simulation study shows both of our estimators trump existing ones for sharpness and approximate normality including QML, Log-LAD, and two types of non-Gaussian QML (Laplace and Power-Law). Finally, we apply the tail-trimmed QML estimator to financial data.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F10 Point estimation
62F35 Robustness and adaptive procedures (parametric inference)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H. and Tukey, J.W. (1972). Robust Estimates of Location : Survey and Advances . Princeton, NJ: Princeton Univ. Press. · Zbl 0254.62001 · doi:10.1515/9781400867011
[2] Andrews, D.W.K. (1988). Laws of large numbers for dependent nonidentically distributed random variables. Econometric Theory 4 458-467. · doi:10.1017/S0266466600013396
[3] Andrews, D.W.K. (1999). Estimation when a parameter is on a boundary. Econometrica 67 1341-1383. · Zbl 1056.62507 · doi:10.1111/1468-0262.00082
[4] Basrak, B., Davis, R.A. and Mikosch, T. (2002). Regular variation of GARCH processes. Stochastic Process. Appl. 99 95-115. · Zbl 1060.60033 · doi:10.1016/S0304-4149(01)00156-9
[5] Berkes, I. and Horváth, L. (2004). The efficiency of the estimators of the parameters in GARCH processes. Ann. Statist. 32 633-655. · Zbl 1048.62082 · doi:10.1214/009053604000000120
[6] Berkes, I., Horváth, L. and Kokoszka, P. (2003). GARCH processes: Structure and estimation. Bernoulli 9 201-227. · Zbl 1064.62094 · doi:10.3150/bj/1068128975
[7] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[8] Boudt, K., Danielsson, J. and Laurent, S. (2011). Robust forecasting of dynamic conditional correlation garch models. Internat. J. Forecasting 29 244-257.
[9] Bradley, R.C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107-144. Update of, and a supplement to, the 1986 original. · Zbl 1189.60077 · doi:10.1214/154957805100000104
[10] Breiman, L. (1965). On some limit theorems similar to the arc-sin law. Teor. Veroyatn. Primen. 10 351-360. · Zbl 0147.37004
[11] Cantoni, E. and Ronchetti, E. (2001). Robust inference for generalized linear models. J. Amer. Statist. Assoc. 96 1022-1030. · Zbl 1072.62610 · doi:10.1198/016214501753209004
[12] Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 17-39. · Zbl 1181.62125 · doi:10.1017/S0266466602181023
[13] Cavaliere, G. and Georgiev, I. (2009). Robust inference in autoregressions with multiple outliers. Econometric Theory 25 1625-1661. · Zbl 1179.62111 · doi:10.1017/S0266466609990272
[14] Charles, A. and Darné, O. (2005). Outliers and GARCH models in financial data. Econom. Lett. 86 347-352. · Zbl 1254.91573 · doi:10.1016/j.econlet.2004.07.019
[15] Chen, C. and Liu, L.-M. (1993). Joint estimation of model parameters and outlier effects in time series. J. Amer. Statist. Assoc. 88 284-297. · Zbl 0775.62229 · doi:10.2307/2290724
[16] Čížek, P. (2008). General trimmed estimation: Robust approach to nonlinear and limited dependent variable models. Econometric Theory 24 1500-1529. · Zbl 1231.62026 · doi:10.1017/S0266466608080596
[17] Davis, R.A. (2010). Heavy tails in financial time series. In Encyclopedia of Quantitative Finance (R. Cont, ed.). New York: Wiley.
[18] De Melo Mendes, B.V. (2000). Assessing the bias of maximum likelihood estimates of contaminated Garch models. J. Stat. Comput. Simul. 67 359-376. · Zbl 0961.62078 · doi:10.1080/00949650008812051
[19] Dudley, R.M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899-929 (1979). · Zbl 0404.60016 · doi:10.1214/aop/1176995384
[20] Dudley, R.M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63 . Cambridge: Cambridge Univ. Press. · Zbl 0951.60033 · doi:10.1017/CBO9780511665622
[21] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. For Insurance and Finance. Applications of Mathematics ( New York ) 33 . Berlin: Springer. · Zbl 0873.62116
[22] Engle, R.F. and Ng, V.K. (1993). Measuring and testing the impact of news on volatility. J. Finance 48 1749-1778.
[23] Fan, J., Qi, L. and Xiu, D. (2014). Quasi maximum likelihood estimation of GARCH models with heavy-tailed likelihoods. J. Business and Economic Statistics .
[24] Francq, C. and Zakoïan, J.-M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10 605-637. · Zbl 1067.62094 · doi:10.3150/bj/1093265632
[25] Francq, C. and Zakoïan, J.-M. (2010). GARCH Models : Structure , Statistical Inference and Financial Applications . New York: Wiley.
[26] Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica 71 285-317. · Zbl 1136.62368 · doi:10.1111/1468-0262.00396
[27] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986). Robust Statistics. The Approach Based on Influence Functions. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . New York: Wiley. · Zbl 0593.62027
[28] Hansen, L.P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50 1029-1054. · Zbl 0502.62098 · doi:10.2307/1912775
[29] Hill, J.B. (2010). On tail index estimation for dependent, heterogeneous data. Econometric Theory 26 1398-1436. · Zbl 1198.62042 · doi:10.1017/S0266466609990624
[30] Hill, J.B. (2012). Heavy-tail and plug-in robust consistent conditional moment tests of functional form. In Festschrift in Honor of Hal White (X. Chen and N. Swanson, eds.) 241-274. New York: Springer.
[31] Hill, J.B. (2013). Least tail-trimmed squares for infinite variance autoregressions. J. Time Series Anal. 34 168-186. · Zbl 1273.62064 · doi:10.1111/jtsa.12005
[32] Hill, J.B. (2014). Supplement to “Robust estimation and inference for heavy tailed GARCH.” .
[33] Hill, J.B. and Aguilar, M. (2013). Moment condition tests for heavy tailed time series. J. Econometrics 172 255-274. · Zbl 1443.62266 · doi:10.1016/j.jeconom.2012.08.013
[34] Huber, P.J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101. · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[35] Hoffman-Jørgensen, J. (1984). Convergence of stochastic processes on Polish spaces. Mimeo, Aarhus Univ., Denmark.
[36] Ibragimov, I.A. (1962). Some limit theorems for stationary processes. Teor. Veroyatn. Primen. 7 361-392.
[37] Jurečková, J. and Sen, P.K. (1996). Robust Statistical Procedures. Asymptotics and Interrelations. Wiley Series in Probability and Statistics : Applied Probability and Statistics . New York: Wiley.
[38] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics . New York: Springer.
[39] Lee, S.-W. and Hansen, B.E. (1994). Asymptotic theory for the \(\operatorname{GARCH}(1,1)\) quasi-maximum likelihood estimator. Econometric Theory 10 29-52. · Zbl 04520392 · doi:10.1017/S0266466600008215
[40] Lighthill, M.J. (1958). Introduction to Fourier Analysis and Generalised Functions. Cambridge Monographs on Mechanics and Applied Mathematics . Cambridge: Cambridge Univ. Press. · Zbl 0078.11203
[41] Ling, S. (2007). Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. J. Econometrics 140 849-873. · Zbl 1247.91142 · doi:10.1016/j.jeconom.2006.07.016
[42] Liu, J.-C. (2006). On the tail behaviors of a family of GARCH processes. Econometric Theory 22 852-862. · Zbl 1100.62087 · doi:10.1017/S0266466606060397
[43] Mancini, L., Ronchetti, E. and Trojani, F. (2005). Optimal conditionally unbiased bounded-influence inference in dynamic location and scale models. J. Amer. Statist. Assoc. 100 628-641. · Zbl 1117.62396 · doi:10.1198/016214504000001402
[44] Meitz, M. and Saikkonen, P. (2008). Stability of nonlinear AR-GARCH models. J. Time Ser. Anal. 29 453-475. · Zbl 1199.62014 · doi:10.1111/j.1467-9892.2007.00562.x
[45] Meitz, M. and Saikkonen, P. (2011). Parameter estimation in nonlinear AR-GARCH models. Econometric Theory 27 1236-1278. · Zbl 1228.62112 · doi:10.1017/S0266466611000041
[46] Muler, N., Peña, D. and Yohai, V.J. (2009). Robust estimation for ARMA models. Ann. Statist. 37 816-840. · Zbl 1162.62405 · doi:10.1214/07-AOS570
[47] Muler, N. and Yohai, V.J. (2008). Robust estimates for GARCH models. J. Statist. Plann. Inference 138 2918-2940. · Zbl 1140.62068 · doi:10.1016/j.jspi.2007.11.003
[48] Nelson, D.B. (1990). Stationarity and persistence in the \(\operatorname{GARCH}(1,1)\) model. Econometric Theory 6 318-334. · doi:10.1017/S0266466600005296
[49] Newey, W.K. and Steigerwald, D.G. (1997). Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica 65 587-599. · Zbl 0870.62091 · doi:10.2307/2171754
[50] Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. Econometrica 57 1027-1057. · Zbl 0698.62031 · doi:10.2307/1913622
[51] Peligrad, M. (1996). On the asymptotic normality of sequences of weak dependent random variables. J. Theoret. Probab. 9 703-715. · Zbl 0855.60021 · doi:10.1007/BF02214083
[52] Peng, L. and Yao, Q. (2003). Least absolute deviations estimation for ARCH and GARCH models. Biometrika 90 967-975. · Zbl 1436.62439 · doi:10.1093/biomet/90.4.967
[53] Petersen, K. (1983). Ergodic Theory. Cambridge Studies in Advanced Mathematics 2 . Cambridge: Cambridge Univ. Press. · Zbl 0507.28010
[54] Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics . New York: Springer. · Zbl 0544.60045
[55] Resnick, S.I. (1987). Extreme Values , Regular Variation , and Point Processes. Applied Probability. A Series of the Applied Probability Trust 4 . New York: Springer. · Zbl 0633.60001
[56] Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 587-597. · Zbl 0798.60027
[57] Ronchetti, E. and Trojani, F. (2001). Robust inference with GMM estimators. J. Econometrics 101 37-69. · Zbl 0996.62026 · doi:10.1016/S0304-4076(00)00073-7
[58] Sakata, S. and White, H. (1998). High breakdown point conditional dispersion estimation with application to s&p 500 daily returns volatility. Econometrica 66 529-567. · Zbl 1015.91530 · doi:10.2307/2998574
[59] Shevlyakov, G., Morgenthaler, S. and Shurygin, A. (2008). Redescending \(M\)-estimators. J. Statist. Plann. Inference 138 2906-2917. · Zbl 1213.62036 · doi:10.1016/j.jspi.2007.11.008
[60] Straumann, D. and Mikosch, T. (2006). Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach. Ann. Statist. 34 2449-2495. · Zbl 1108.62094 · doi:10.1214/009053606000000803
[61] Zhu, K. and Ling, S. (2011). Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models. Ann. Statist. 39 2131-2163. · Zbl 1227.62076 · doi:10.1214/11-AOS895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.