×

zbMATH — the first resource for mathematics

Logic, language, information, and computation. 22nd international workshop, WoLLIC 2015, Bloomington, IN, USA, July 20–23, 2015. Proceedings. (English) Zbl 1319.03010
Lecture Notes in Computer Science 9160. Berlin: Springer (ISBN 978-3-662-47708-3/pbk; 978-3-662-47709-0/ebook). xx, 201 p. (2015).

Show indexed articles as search result.

The articles of this volume will be reviewed individually. For the preceding workshop see [Zbl 1295.03005].
Indexed articles:
Belk, James; McGrail, Robert W., The word problem for finitely presented quandles is undecidable, 1-13 [Zbl 06484964]
Cohen, Liron; Constable, Robert L., Intuitionistic ancestral logic as a dependently typed abstract programming language, 14-26 [Zbl 06484965]
Heinemann, Bernhard, On topologically relevant fragments of the logic of linear flows of time, 27-37 [Zbl 06484966]
Mordido, Andreia; Caleiro, Carlos, An equation-based classical logic, 38-52 [Zbl 06484967]
Abrusci, Vito Michele; Maieli, Roberto, Cyclic multiplicative proof nets of linear logic with an application to language parsing, 53-68 [Zbl 1365.03039]
de Haan, Ronald; Szymanik, Jakub, A dichotomy result for Ramsey quantifiers, 69-80 [Zbl 06484969]
Ghani, Neil; Nordvall Forsberg, Fredrik; Orsanigo, Federico, Parametric polymorphism – universally, 81-92 [Zbl 06484970]
Facchini, Alessandro; Murlak, Filip; Skrzypczak, Michał, On the weak index problem for game automata, 93-108 [Zbl 06484971]
de Groote, Philippe, Proof-theoretic aspects of the Lambek-Grishin calculus, 109-123 [Zbl 06484972]
Endrullis, Jörg; Moss, Lawrence S., Syllogistic logic with “most”, 124-139 [Zbl 06484973]
Sano, Katsuhiko; Virtema, Jonni, Characterizing frame definability in team semantics via the universal modality, 140-155 [Zbl 06484974]
Courtault, Jean-René; van Ditmarsch, Hans; Galmiche, Didier, An epistemic separation logic, 156-173 [Zbl 06484975]
Ésik, Zoltán, Equational properties of stratified least fixed points (extended abstract), 174-188 [Zbl 06484976]
Bhattacharya, Prasit, The \(p\)-adic integers as final coalgebra, 189-199 [Zbl 06484977]

MSC:
03-06 Proceedings, conferences, collections, etc. pertaining to mathematical logic and foundations
68-06 Proceedings, conferences, collections, etc. pertaining to computer science
03B70 Logic in computer science
00B25 Proceedings of conferences of miscellaneous specific interest
PDF BibTeX XML Cite
Full Text: DOI