Valuation of large variable annuity portfolios under nested simulation: a functional data approach. (English) Zbl 1318.91112

Summary: A variable annuity (VA) is equity-linked annuity product that has rapidly grown in popularity around the world in recent years. Research up to date on VA largely focuses on the valuation of guarantees embedded in a single VA contract. However, methods developed for individual VA contracts based on option pricing theory cannot be extended to large VA portfolios. Insurance companies currently use nested simulation to valuate guarantees for VA portfolios but efficient valuation under nested simulation for a large VA portfolio has been a real challenge. The computation in nested simulation is highly intensive and often prohibitive. In this paper, we propose a novel approach that combines a clustering technique with a functional data analysis technique to address the issue. We create a highly non-homogeneous synthetic VA portfolio of 100,000 contracts and use it to estimate the dollar Delta of the portfolio at each time step of outer loop scenarios under the nested simulation framework over a period of 25 years. Our test results show that the proposed approach performs well in terms of accuracy and efficiency.


91B30 Risk theory, insurance (MSC2010)
91G20 Derivative securities (option pricing, hedging, etc.)


fda (R)
Full Text: DOI


[1] Ankenman, B.; Nelson, B. L.; Staum, J., Stochastic Kriging for simulation metamodeling, Oper. Res., 58, 2, 371-382, (2010) · Zbl 1342.62134
[2] Augustyniak, M.; Boudreault, M., An out-of-sample analysis of investment guarantees for equity-linked products, N. Am. Actuar. J., 16, 2, 193-206, (2012)
[3] Bacinello, A. R.; Millossovich, P.; Olivieri, A.; Pitacco, E., Variable annuities: a unifying valuation approach, Insurance Math. Econom., 49, 3, 285-297, (2011)
[4] Bauer, D.; Kling, A.; Russ, J., A universal pricing framework for guaranteed minimum benefits in variable annuities, ASTIN Bull., 38, 2, 621-651, (2008) · Zbl 1274.91399
[5] Bauer, D.; Reuss, A.; Singer, D., On the calculation of the solvency capital requirement based on nested simulations, ASTIN Bull., 42, 2, 453-499, (2012) · Zbl 1277.91074
[6] Bélanger, A. C.; Forsyth, P. A.; Labahn, G., Valuing the guaranteed minimum death benefit clause with partial withdrawals, Appl. Math. Finance, 16, 6, 451-496, (2009) · Zbl 1189.91066
[7] Black, F.; Scholes, M. S., The pricing of options and corporate liabilities, J. Polit. Econ., 81, 3, 637-654, (1973) · Zbl 1092.91524
[8] Boyle, P. P.; Hardy, M. R., Two approaches to reserving for maturity guarantees, J. Staple Actuar. Soc., 21, 113-127, (1997) · Zbl 0894.90044
[9] Boyle, P. P.; Tian, W., The design of equity-indexed annuities, Insurance Math. Econom., 43, 303-315, (2008) · Zbl 1152.91484
[10] Broadie, M.; Du, Y.; Moallemi, C. C., Efficient risk estimation via nested sequential simulation, Manage. Sci., 57, 6, 1172-1194, (2011) · Zbl 1218.91170
[11] Broadie, M., Du, Y., Moallemi, C.C., 2011b. Risk estimation via weighted regression. In: Proceedings of the Winter Simulation Conference, WSC’11, pp. 3859-3870.
[12] Caballero, W.; Giraldo, R.; Mateu, J., A universal Kriging approach for spatial functional data, Stoch. Environ. Res. Risk Assess., 27, 7, 1553-1563, (2013)
[13] Carriere, J. F., Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance Math. Econom., 19, 1, 19-30, (1996) · Zbl 0894.62109
[14] Cathcart, M.; Morrison, S., Variable annuity economic capital: the least-squares Monte Carlo approach, Life Pensions, 36-40, (2009), October
[15] Chen, X., Nelson, B.L., Kim, K.-K., 2012. Stochastic kriging for conditional value-at-risk and its sensitivities. In: Proceedings of the 2012 Winter Simulation Conference, WSC, pp. 1-12.
[16] Cheung, K. C.; Yang, H., Optimal stopping behavior of equity-linked investment products with regime switching, Insurance Math. Econom., 37, 599-614, (2005) · Zbl 1129.60065
[17] Chi, Y.; Lin, X. S., Are flexible premium variable annuities under-priced?, ASTIN Bull., 42, 2, 559-574, (2012) · Zbl 1277.91078
[18] Coleman, T. F.; Li, Y.; Patron, M.-C., Hedging guarantees in variable annuities under both equity and interest rate risks, Insurance Math. Econom., 38, 215-228, (2006) · Zbl 1128.91020
[19] Daul, S.; Vidal, E. G., Replication of insurance liabilities, RiskMetrics J., 9, 1, (2009)
[20] Deelstra, G.; Rayée, G., Pricing variable annuity guarantees in a local volatility framework, Insurance Math. Econom., 53, 3, 650-663, (2013) · Zbl 1290.91158
[21] Dembo, R.; Rosen, D., The practice of portfolio replication: a practical overview of forward and inverse problems, Ann. Oper. Res., 85, 267-284, (1999) · Zbl 0920.90006
[22] Fox, J., A nested approach to simulation var using Moses, Insights: Financ. Model., 1-7, (2013)
[23] Gan, G., Application of data clustering and machine learning in variable annuity valuation, Insurance Math. Econom., 53, 3, 795-801, (2013) · Zbl 1290.91086
[24] Gan, G.; Ma, C.; Wu, J., (Data Clustering: Theory, Algorithms and Applications, ASA-SIAM Series on Statistics and Applied Probability, (2007), SIAM Press Philadelphia, PA, USA)
[25] Gao, J.; Ulm, E. R., Optimal consumption and allocation in variable annuities with guaranteed minimum death benefits, Insurance Math. Econom., 51, 3, 586-598, (2012) · Zbl 1285.91056
[26] Gerber, H. U.; Shiu, E. S.W., Pricing lookback options and dynamic guarantees, N. Am. Actuar. J., 7, 1, 48-67, (2003) · Zbl 1084.91507
[27] Gerber, H. U.; Shiu, E. S.W.; Yang, H., Valuing equity-linked death benefits in jump diffusion models, Insurance Math. Econom., 53, 3, 615-623, (2013) · Zbl 1290.91162
[28] Hardy, M. R., A regime-switching model of long-term stock returns, N. Am. Actuar. J., 5, 2, 41-53, (2001) · Zbl 1083.62530
[29] Hardy, M. R., Investment guarantees: modeling and risk management for equity-linked life insurance, (2003), John Wiley & Sons, Inc. Hoboken, New Jersey · Zbl 1092.91042
[30] Hardy, M. R.; Freeland, R. K.; Till, M. C., Validation of long-term equity return models for equity-linked guarantees, N. Am. Actuar. J., 10, 4, 28-47, (2006)
[31] Hartman, B. M.; Groendyke, C., Model selection and averaging in financial risk management, N. Am. Actuar. J., 17, 3, 216-228, (2013) · Zbl 1412.91044
[32] Huang, Z., Extensions to the \(k\)-means algorithm for clustering large data sets with categorical values, Data Min. Knowl. Discov., 2, 3, 283-304, (1998)
[33] Huang, J. Z.; Ng, M. K.; Rong, H.; Li, Z., Automated variable weighting in \(k\)-means type clustering, IEEE Trans. Pattern Anal. Mach. Intell., 27, 5, 657-668, (2005)
[34] Stochastic modeling: theory and reality from an actuarial perspective, (2010), International Actuarial Association
[35] The 2013 IRI fact book, (2013), Insured Retirement Institute
[36] Ji, J.; Pang, W.; Zhou, C.; Han, X.; Wang, Z., A fuzzy \(k\)-prototype clustering algorithm for mixed numeric and categorical data, Knowl.-Based Syst., 30, 129-135, (2012)
[37] Jiang, S. J.; Chang, M. C., Variable annuity with guarantees: valuation and simulation, J. Money Invest. Bank., 14, 74-83, (2010)
[38] Kleijnen, J. P.C.; van Beers, W. C.M., Application-driven sequential designs for simulation experiments: Kriging metamodelling, J. Oper. Res. Soc., 55, 8, 876-883, (2004) · Zbl 1060.62090
[39] Kolkiewicz, A.; Liu, Y., Semi-static hedging for gmwb in variable annuities, N. Am. Actuar. J., 16, 1, 112-140, (2012) · Zbl 1291.91205
[40] Lin, X. S.; Tan, K. S.; Yang, H., Pricing annuity guarantees under a regime-switching model, N. Am. Actuar. J., 13, 316-338, (2009)
[41] Longstaff, F. A.; Schwartz, E. S., Valuing American options by simulation: a simple least-squares approach, Rev. Financ. Stud., 14, 1, 113-147, (2001)
[42] Milevsky, M. A.; Posner, S. E., The titanic option: valuation of the guaranteed minimum death benefit in variable annuities and mutual funds, J. Risk Insurance, 68, 1, 93-128, (2001)
[43] Milevsky, M. A.; Salisbury, T. S., Financial valuation of guaranteed minimum withdrawal benefits, Insurance Math. Econom., 38, 21-38, (2006) · Zbl 1116.91048
[44] Oechslin, J.; Aubry, O.; Aellig, M.; Käppeli, A.; Brönnimann, D.; Tandonnet, A.; Valois, G., Replicating embedded options in life insurance policies, Life Pensions, 47-52, (2007)
[45] Ramsay, J. O.; Silverman, B. W., (Applied Functional Data Analysis: Methods and Case Studies, Springer Series in Statistics, (2002), Springer New York, NY) · Zbl 1011.62002
[46] Ramsay, J. O.; Silverman, B. W., (Functional Data Analysis, Springer Series in Statistics, (2005), Springer New York, NY) · Zbl 0882.62002
[47] Reynolds, C.; Man, S., Nested stochastic pricing: the time has come, Prod. Matters! - Soc. Actuar., 71, 16-20, (2008)
[48] Vadiveloo, J., Replicated stratified sampling—a new financial modeling option, Actuar. Res. Clear. House, 1, 1-4, (2012)
[49] Yang, S. S.; Dai, T.-S., A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions, Insurance Math. Econom., 52, 2, 231-242, (2013) · Zbl 1284.91279
[50] Zhuo, J.; Park, S. W., The economic capital and risk adjustment performance for VA with guarantees with an example of GMAB, (Enterprise Risk Management Symposium, (2006), Society of Actuaries)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.