×

zbMATH — the first resource for mathematics

Cabling procedure for the colored HOMFLY polynomials. (English. Russian original) Zbl 1318.81055
Theor. Math. Phys. 178, No. 1, 1-58 (2014); translation from Teor. Mat. Fiz. 178, No. 1, 3-68 (2014).
In a truly tour de force the authors have discussed how to calculate the so-called colored HOMFLY polynomials via the cabling procedure. Along the whole paper, the reader can find several important procedures necessary to the calculation of HOMFLY polynomials dividing into, basically, three steps: the construction of cable knot from the initial knot, identification of the necessary projector relating fundamental HOMFLY polynomials to colored HOMFLY polynomials, and finally calculation of the colored HOMFLY polynomials.
The paper is well written and the mathematical aspects are presented in a robust and precise manner. Those readers who are interested in topological field theories endowed with \(\mathrm{SU}(N)\) gauge groups shall find in this paper a solid piece of work supporting future researches in the field.

MSC:
81T45 Topological field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
57M25 Knots and links in the \(3\)-sphere (MSC2010)
Software:
Knot Atlas
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. B, 62, 8–21 (1949). · Zbl 0032.23301 · doi:10.1088/0370-1301/62/1/303
[2] Y. Aharonov and D. Bohm, Phys. Rev., 115, 485–491 (1959). · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[3] S. Coleman, Aspects of Symmetry, Cambridge Univ. Press, Cambridge (1985). · Zbl 0575.22023
[4] V. Rubakov, Classical Theory of Gauge Fields, Princeton Univ. Press, Princeton, N. J. (2002). · Zbl 1036.81002
[5] A. M. Polyakov, Nucl. Phys. B, 120, 429–458 (1977). · doi:10.1016/0550-3213(77)90086-4
[6] N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19–52 (1994); arXiv:hep-th/9407087v1 (1994). · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[7] N. Seiberg and E. Witten, Nucl. Phys. B, 431, 484–550 (1994); arXiv:hep-th/9408099v1 (1994). · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[8] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984). · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[9] M. F. Atiyah, ”New invariants of 3- and 4-dimensional manifolds,” in: The Mathematical Heritage of Herman Weyl (Proc. Symp. Pure Math., Vol. 48, R. O. Wells Jr., ed.), Amer. Math. Soc., Providence, R. I. (1988), pp. 285–299. · Zbl 0667.57018
[10] M. A. Semenov-Tian-Shansky,, 37, 53–65 (1973); Math. USSR-Izv., 10, 535–563 (1976).
[11] J. J. Duistermaat and G. J. Heckman, Inv. Math., 69, 259–268 (1982); 72, 153–158 (1983). · Zbl 0503.58015 · doi:10.1007/BF01399506
[12] A. Hietamhki, A. Yu. Morozov, A. J. Niemi, and K. Palo, Phys. Lett. B, 263, 417–424 (1991). · doi:10.1016/0370-2693(91)90481-5
[13] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theories, Addison-Wesley, Reading, Mass. (1995).
[14] S.-S. Chern and J. Simons, Ann. Math. (2), 99, 48–69 (1974). · Zbl 0283.53036 · doi:10.2307/1971013
[15] E. Witten, Commun. Math. Phys., 121, 351–399 (1989). · Zbl 0667.57005 · doi:10.1007/BF01217730
[16] L. H. Kauffman, The Interface of Knots and Physics (Proc. Symp. Appl. Math., Vol. 51), Amer. Math. Soc., Providence, R. I. (1996). · Zbl 0832.00047
[17] A. Mironov and A. Morozov, AIP Conf. Proc., 1483, 189–211 (2012); arXiv:1208.2282v1 [hep-th] (2012). · Zbl 1291.81260 · doi:10.1063/1.4756970
[18] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, and A. Ocneanu, Bull. Amer. Math Soc., n.s., 12, 239–246 (1985). · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[19] J. H. Przytycki and K. P. Traczyk, Kobe J. Math., 4, 115–139 (1987).
[20] W. B. R. Lickorish and K. C. Millett, Topology, 26, 107–141 (1987). · Zbl 0608.57009 · doi:10.1016/0040-9383(87)90025-5
[21] S. Morrison, D. Bar-Natan, and M. Drugykh, ”The Knot Atlas,” http://katlas.org/wiki/Main Page (2013).
[22] A. Yu. Morozov and A. A. Roslyi, Private communication (1991).
[23] A. Morozov and A. Smirnov, Nucl. Phys. B, 835, 284–313 (2010); arXiv:1001.2003v2 [hep-th] (2010). · Zbl 1204.81097 · doi:10.1016/j.nuclphysb.2010.03.012
[24] A. Smirnov, ”Notes on Chern-Simons theory in the temporal gauge,” in: The Most Unexpected at LHC and the Status of High Energy Frontier (The Subnuclear Series, Vol. 47, A. Zichichi, ed.), World Scientific, Singapore, pp. 489–498; arXiv:0910.5011v1 [hep-th] (2009).
[25] D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, and A. V. Smirnov, Theor. Math. Phys., 172, 939–962 (2012); arXiv:1104.2589v3 [hep-th] (2011). · Zbl 1280.81092 · doi:10.1007/s11232-012-0088-4
[26] R. Kirby and P. Melvin, Invent. Math., 105, 473–545 (1991). · Zbl 0745.57006 · doi:10.1007/BF01232277
[27] M. Alvarez, J. M. F. Labastida, and E. Perez, Nucl. Phys. B, 488, 677–718 (1997); arXiv:hep-th/9607030v1 (1996). · Zbl 0925.57007 · doi:10.1016/S0550-3213(96)00689-X
[28] J. M. F. Labastida, and E. Perez, J. Math. Phys., 39, 5183–5198 (1998); arXiv:hep-th/9710176v1 (1997). · Zbl 0934.58024 · doi:10.1063/1.532565
[29] R. Gopakumar and C. Vafa, Adv. Theor. Math. Phys., 3, 1415–1443 (1999); arXiv:hep-th/9811131v1 (1998).
[30] H. Ooguri and C. Vafa, Nucl. Phys. B, 577, 419–438 (2000); arXiv:hep-th/9912123v3 (1999). · Zbl 1036.81515 · doi:10.1016/S0550-3213(00)00118-8
[31] J. Labastida and M. Mariño, Commun. Math. Phys., 217, 423–449 (2001); arXiv:hep-th/0004196v3 (2000); ”A new point of view in the theory of knot and link invariants,” arXiv:math/0104180v4 (2001). · Zbl 1018.81049 · doi:10.1007/s002200100374
[32] M. Marino and C. Vafa, ”Framed knots at large N,” in: Orbifolds in Mathematics and Physics (Contemp. Math., Vol. 310), Amer. Math. Soc., Providence, R. I. (2002), pp. 185–204; arXiv:hep-th/0108064v1 (2001). · Zbl 1042.81071
[33] M. Mariño, ”Chern-Simons theory, the 1/N expansion, and string theory,” in: Chern-Simons Gauge Theory: 20 Years After (AMS/IP Stud. Adv. Math., Vol. 50), Amer. Math. Soc., Providence, R. I. (2011), pp. 243–260; arXiv:1001.2542v3 [hep-th] (2010).
[34] M. Mariño, ”Lectures on non-perturbative effects in large N gauge theories, matrix models, and strings,” arXiv:1206.6272v1 [hep-th] (2012). · Zbl 1338.81335
[35] R. K. Kaul, Commun. Math. Phys., 162, 289–319 (1994); arXiv:hep-th/9305032v1 (1993). · Zbl 0832.57006 · doi:10.1007/BF02102019
[36] R. K. Kaul and T. R. Govindarajan, Nucl. Phys. B, 380, 293–333 (1992); arXiv:hep-th/9111063v1 (1991). · Zbl 0938.81553 · doi:10.1016/0550-3213(92)90524-F
[37] P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Nucl. Phys. B, 402, 548–566 (1993); arXiv:hep-th/9212110v1 (1992). · Zbl 0941.57500 · doi:10.1016/0550-3213(93)90652-6
[38] P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Nucl. Phys. B, 422, 291–306 (1994); arXiv:hep-th/9312215v1 (1993). · Zbl 0990.81694 · doi:10.1016/0550-3213(94)00102-2
[39] P. Ramadevi and T. Sarkar, Nucl. Phys. B, 600, 487–511 (2001); arXiv:hep-th/0009188v4 (2000). · Zbl 1097.81742 · doi:10.1016/S0550-3213(00)00761-6
[40] G. Moore and N. Seiberg, Phys. Lett. B, 220, 422–430 (1989). · doi:10.1016/0370-2693(89)90897-6
[41] V. V. Fock and Ya. I. Kogan, Modern Phys. Lett. A, 5, 1365–1372 (1990). · Zbl 1020.81704 · doi:10.1142/S0217732390001554
[42] J. M. F. Labastida and A. V. Ramallo, Phys. Lett. B, 227, 92–102 (1989); Nucl. Phys. B Proc. Suppl., 16, 594–596 (1990). · doi:10.1016/0370-2693(89)91289-6
[43] L. Alvarez-Gaumé, C. Gomez, and G. Sierra, Phys. Lett. B, 220, 142–152 (1989). · Zbl 0689.17009 · doi:10.1016/0370-2693(89)90027-0
[44] A. S. Schwarz, Commun. Math. Phys., 67, 1–16 (1979). · Zbl 0429.58015 · doi:10.1007/BF01223197
[45] V. F. R. Jones, Bull. Amer. Math. Soc., n.s., 12, 103–111 (1985). · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2
[46] V. F. R. Jones, Ann. Math. (2), 126, 335–388 (1987).
[47] L. Kauffman, Topology, 26, 395–407 (1987). · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[48] P. Borhade, P. Ramadevi, and T. Sarkar, Nucl. Phys. B, 678, 656–681 (2004); arXiv:hep-th/0306283v4 (2003). · Zbl 1097.81709 · doi:10.1016/j.nuclphysb.2003.11.023
[49] Zodinmawia and P. Ramadevi, Nucl. Phys. B, 870, 205–242 (2013); arXiv:1107.3918v7 [hep-th] (2011). · Zbl 1262.81168 · doi:10.1016/j.nuclphysb.2012.12.020
[50] Zodinmawia and P. Ramadevi, ”Reformulated invariants for non-torus knots and links,” arXiv:1209.1346v1 [hep-th] (2012). · Zbl 1262.81168
[51] S. Nawata, P. Ramadevi, Zodinmawia, and X. Sun, JHEP, 1211, 157 (2012); arXiv:1209.1409v4 [hep-th] (2012). · Zbl 1397.57029 · doi:10.1007/JHEP11(2012)157
[52] S. Nawata, P. Ramadevi, and Zodinmawia, ”Multiplicity-free quantum 6j-symbols for U q(sl N),” arXiv: 1302.5143v3 [hep-th] (2013). · Zbl 1330.17020
[53] S. Nawata, P. Ramadevi, and Zodinmawia, ”Colored HOMFLY polynomials from Chern-Simons theory,” arXiv:1302.5144v4 [hep-th] (2013). · Zbl 1296.57015
[54] S. Gukov, A. Schwarz, and C. Vafa, Lett. Math. Phys., 74, 53–74 (2005); arXiv:hep-th/0412243v3 (2004). · Zbl 1105.57011 · doi:10.1007/s11005-005-0008-8
[55] N. M. Dunfield, S. Gukov, and J. Rasmussen, Experiment. Math., 15, 129–159 (2006); arXiv:math/0505662v2 (2005). · Zbl 1118.57012 · doi:10.1080/10586458.2006.10128956
[56] E. Gorsky, S. Gukov, and M. Stosic, ”Quadruply-graded colored homology of knots,” arXiv:1304.3481v1 [math.QA] (2013).
[57] S. Arthamonov, A. Mironov, and A. Morozov, ”Differential hierarchy and additional grading of knot polynomials,” arXiv:1306.5682v1 [hep-th] (2013). · Zbl 1333.57008
[58] M. Rosso and V. F. R. Jones, J. Knot Theory Ramifications, 2, 97–112 (1993). · Zbl 0787.57006 · doi:10.1142/S0218216593000064
[59] X.-S. Lin and H. Zheng, Trans. Amer. Math. Soc., 362, 1–18 (2010); arXiv:math/0601267v1 (2006). · Zbl 1193.57006 · doi:10.1090/S0002-9947-09-04691-1
[60] S. Stevan, Ann. Henri Poincaré, 11, 1201–1224 (2010); arXiv:1003.2861v2 [hep-th] (2010). · Zbl 1208.81149 · doi:10.1007/s00023-010-0058-z
[61] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, JHEP, 1303, 021 (2013); arXiv:1106.4305v3 [hep-th] (2011). · Zbl 1342.57004 · doi:10.1007/JHEP03(2013)021
[62] M. Aganagic and Sh. Shakirov, ”Knot homology from refined Chern-Simons theory,” arXiv:1105.5117v2 [hepth] (2011). · Zbl 1322.81069
[63] M. Aganagic and Sh. Shakirov, ”Refined Chern-Simons theory and topological string,” arXiv:1210.2733v1 [hep-th] (2012).
[64] A. Mironov, A. Morozov, Sh. Shakirov, and A. Sleptsov, JHEP, 1220, 70 (2012); arXiv:1201.3339v2 [hep-th] (2012). · Zbl 1348.81391 · doi:10.1007/JHEP05(2012)070
[65] A. Mironov, A. Morozov, and Sh. Shakirov, J. Phys. A, 45, 355202 (2012); arXiv:1203.0667v1 [hep-th] (2012). · Zbl 1247.81397 · doi:10.1088/1751-8113/45/35/355202
[66] E. Gorsky, ”q, t-Catalan numbers and knot homology,” in: Zeta Functions in Algebra and Geometry (Contemp. Math., Vol. 566, A. Campillo, G. Cardona, A. Melle-Hernandez, W. Veys, and W. A. Zuniga-Galindo, eds.), Amer. Math. Soc., Providence, R. I. (2012), pp. 213–232; arXiv:1003.0916v3 [math.AG] (2010).
[67] I. Cherednik, ”Jones polynomials of torus knots via DAHA,” arXiv:1111.6195v10 [math.QA] (2011). · Zbl 1329.57019
[68] A. Oblomkov, J. Rasmussen, and V. Shende, ”The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link,” arXiv:1201.2115v1 [math.AG] (2012). · Zbl 1256.14025
[69] E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende, ”Torus knots and the rational DAHA,” arXiv:1207.4523v1 [math.RT] (2012). · Zbl 1318.57010
[70] E. Gorsky and A. Negut, ”Refined knot invariants and Hilbert schemes,” arXiv:1304.3328v2 [math.RT] (2013).
[71] S. Garoufalidis, ”On the characteristic and deformation varieties of a knot,” in: Proceedings of the Casson Fest (Geom. Topol. Monogr., Vol. 7, C. Gordon and Y. Rieck, eds.), Geom. Topol. Publ., Coventry, UK (2004), pp. 291–309; arXiv:math/0306230v4 (2003). · Zbl 1080.57014
[72] A. Brini, B. Eynard, and M. Mariño, Ann. Henri Poincaré, 13, 1873–1910 (2012); arXiv:1105.2012v1 [hep-th] (2011). · Zbl 1256.81086 · doi:10.1007/s00023-012-0171-2
[73] R. Gelca, Math. Proc. Cambridge Philos. Soc., 133, 311–323 (2002); arXiv:math/0004158v1 (2000). · Zbl 1017.57002 · doi:10.1017/S0305004102006047
[74] R. Gelca and J. Sain, J. Knot Theory Ramifications, 12, 187–201 (2003); arXiv:math/0201100v1 (2002). · Zbl 1034.57005 · doi:10.1142/S021821650300238X
[75] S. Gukov, Commun. Math. Phys., 255, 577–627 (2005); arXiv:hep-th/0306165v1 (2003). · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[76] H. Fuji, S. Gukov, and P. Sulkowski, ”Volume conjecture: Refined and categorified,” arXiv:1203.2182v1 [hepth] (2012).
[77] H. Fuji, S. Gukov, M. Stosic, and P. Sulkowski, ”3d Analogs of Argyres-Douglas theories and knot homologies,” arXiv:1209.1416v1 [hep-th] (2012).
[78] H. R. Morton and H. J. Ryder, ”Mutants and SU(3, q) invariants,” in: The Epstein Birthday Schrift (Geom. Topol. Monogr., Vol. 1, I. Rivin, C. Rourke, and C. Series, eds.), Geom. Topol. Publ., Coventry, UK (1998), pp. 365–381; arXiv:math/9810197v1 (1998). · Zbl 0901.57002
[79] H. R. Morton and M. Rampichini, ”Mutual braiding and the band presentation of braid groups,” in: Knots in Hellas’98 (Ser. Knots and Everything, Vol. 24, C. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, and J. H. Przytycki, eds.), World Scientific, Singapore (2000), pp. 335–346; arXiv:math/9907017v1 (1999). · Zbl 0998.57014
[80] H. R. Morton and R. J. Hadji, Algebr. Geom. Topol., 2, 11–32 (2002); arXiv:math/0106207v2 (2001). · Zbl 1002.57014 · doi:10.2140/agt.2002.2.11
[81] H. Morton and S. Lukac, J. Knot Theory Ramifications, 12, 395–416 (2003); arXiv:math/0108011v1 (2001). · Zbl 1055.57014 · doi:10.1142/S0218216503002536
[82] V. G. Turaev, Invent. Math., 92, 527–553 (1988). · Zbl 0648.57003 · doi:10.1007/BF01393746
[83] N. Yu. Reshetikhin and V. G. Turaev, Commun. Math. Phys., 127, 1–26 (1990). · Zbl 0768.57003 · doi:10.1007/BF02096491
[84] E. Guadagnini, M. Martellini, and M. Mintchev, ”Chern-Simons field theory and quantum groups,” in: Quantum Groups (Lect. Notes Phys., Vol. 370, H.-D. Doebner and J.-D. Hennig, eds.), Springer, Berlin (1990), pp. 307–317; Phys. Lett. B, 235, 275–281 (1990). · Zbl 0722.57003
[85] A. Mironov, A. Morozov, and And. Morozov, ”Character expansion for HOMFLY polynomials: I. Integrability and difference equations,” in: Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger, eds.), World Scientific, Singapore (2013), pp. 101–118; arXiv:1112.5754v1 [hep-th] (2011).
[86] A. Mironov, A. Morozov, and And. Morozov, JHEP, 1203, 034 (2012); arXiv:1112.2654v2 [math.QA] (2011). · Zbl 1309.81114 · doi:10.1007/JHEP03(2012)034
[87] H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, Internat. J. Mod. Phys. A, 27, 1250099 (2012); arXiv:1204.4785v4 [hep-th] (2012). · Zbl 1260.81134 · doi:10.1142/S0217751X12500996
[88] H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, JHEP, 1207, 131 (2012); arXiv:1203.5978v5 [hep-th] (2012). · Zbl 1397.57012 · doi:10.1007/JHEP07(2012)131
[89] H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, Internat. J. Mod. Phys. A, 28, 1340009 (2013); arXiv:1209.6304v1 [math-ph] (2012). · Zbl 1259.81082 · doi:10.1142/S0217751X13400095
[90] A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, Nucl. Phys. B, 868, 271–313 (2013); arXiv: 1207.0279v2 [hep-th] (2012). · Zbl 1262.81073 · doi:10.1016/j.nuclphysb.2012.11.006
[91] A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, ”Knot polynomials in the first non-symmetric representation,” arXiv:1211.6375v1 [hep-th] (2012). · Zbl 1285.81035
[92] A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, Adv. High Energy Phys., 2013, 931830 (2013); arXiv:1304.1486v1 [hep-th] (2013). · Zbl 1328.81123 · doi:10.1155/2013/931830
[93] A. Mironov, A. Morozov, and And. Morozov, ”Evolution method and ”differential hierarchy’ of colored knot polynomials,” arXiv:1306.3197v1 [hep-th] (2013). · Zbl 1262.81073
[94] W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry, Cambridge (1997).
[95] A. Mironov, A. Morozov, and A. Sleptsov, Theor. Math. Phys., 177, 1435–1470 (2013); arXiv:1303.1015v1 [hep-th] (2013). · Zbl 1336.57022 · doi:10.1007/s11232-013-0115-0
[96] A. Mironov, A. Morozov, and A. Sleptsov, Eur. Phys. J. C, 73, 2492 (2013); arXiv:1304.7499v1 [hep-th] (2013). · doi:10.1140/epjc/s10052-013-2492-9
[97] C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York (1994). · Zbl 0840.57001
[98] A. Anokhina and A. Morozov, ”Cabling procedure for the colored HOMFLY polynomials,” arXiv:1307.2216v1 [hep-th] (2013). · Zbl 1318.81055
[99] N. Ya. Vilenkin and A. U. Klimyk, ”Representations of Lie groups and special functions,” in: Noncommutative Harmonic Analysis – 2 (Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., Vol. 59), VINITI, Moscow (1990), pp. 145–264. · Zbl 0727.22007
[100] V. V. Prasolov and A. B. Sossinski, Knots, Links, Braids, and 3-Manifolds [in Russian], MTsMNO, Moscow (1997); English transl. (Transl. Math. Monogr., Vol. 154), Amer. Math. Soc., Providence, R. I. (1997).
[101] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1998). · Zbl 0899.05068
[102] X.-S. Lin and H. Zheng, Trans. Amer. Math. Soc., 362, 1–18 (2010); arXiv:math.QA/0601267v1 (2006). · Zbl 1193.57006 · doi:10.1090/S0002-9947-09-04691-1
[103] S. Zhu, ”Colored HOMFLY polynomial via skein theory,” arXiv:1206.5886v1 [math.GT] (2012).
[104] P. P. Kulish and N. Yu. Reshetikhin, J. Soviet Math., 34, 1948–1971 (1986). · doi:10.1007/BF01095104
[105] P. P. Kulish and E. K. Sklyanin, ”Quantum spectral transform method recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), pp. 61–119. · Zbl 0734.35071
[106] M. Jimbo, T. Miwa, and M. Okado, Modern Phys. Lett. B, 1, 73–79 (1987). · Zbl 0663.17011 · doi:10.1142/S0217984987000119
[107] A. Morozov, JHEP, 1212, 116 (2012); arXiv:1208.3544v1 [hep-th] (2012). · Zbl 1397.81104 · doi:10.1007/JHEP12(2012)116
[108] A. Morozov, JETP Letters, 97, 171–172 (2013); arXiv:1211.4596v2 [hep-th] (2012). · doi:10.1134/S0021364013040103
[109] M. Khovanov, Duke Math. J., 101, 359–426 (2000). · Zbl 0960.57005 · doi:10.1215/S0012-7094-00-10131-7
[110] D. Bar-Natan, Algebr. Geom. Topol., 2, 337–370 (2002); arXiv:math/0201043v3 (2002). · Zbl 0998.57016 · doi:10.2140/agt.2002.2.337
[111] M. Khovanov and L. Rozhansky, Fund. Math., 199, 1–91 (2008); arXiv:math.QA/0401268v2 (2004). · Zbl 1145.57009 · doi:10.4064/fm199-1-1
[112] M. Khovanov and L. Rozhansky, Geom. Topol., 12, 1387–1425 (2008); arXiv:math.QA/0505056v2 (2005). · Zbl 1146.57018 · doi:10.2140/gt.2008.12.1387
[113] N. Carqueville and D. Murfet, ”Computing Khovanov-Rozansky homology and defect fusion,” arXiv: 1108.1081v2 [math.QA] (2011). · Zbl 1326.57024
[114] V. Dolotin and A. Morozov, JHEP, 1301, 065 (2013); arXiv:1208.4994v1 [hep-th] (2012). · Zbl 1342.57001 · doi:10.1007/JHEP01(2013)065
[115] V. Dolotin and A. Morozov, J. Phys. Conf. Ser., 411, 012013 (2013); arXiv:1209.5109v1 [math-ph] (2012). · doi:10.1088/1742-6596/411/1/012013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.