×

Steady magnetohydrodynamic flow in a diverging channel with suction or blowing. (English) Zbl 1318.76024

Summary: An analysis is made of steady two-dimensional divergent flow of an electrically conducting incompressible viscous fluid in a channel formed by two non-parallel walls, the flow being caused by a source of fluid volume at the intersection of the walls. The fluid is permeated by a magnetic field produced by an electric current along the line of intersection of the channel walls. The walls are porous and subjected to either suction \((k > 0)\) or blowing \((k < 0)\) of equal magnitude on both the walls. It is found that when the Reynolds number for the flow is large and the magnetic Reynolds number is very small, boundary layers are formed on the channel walls such that a sufficient condition for the existence of a unique boundary layer solution (without separation) in the case of suction is \(N > 2\), \(N\) being the magnetic parameter. When \(k = 0\), boundary layer exists without separation only when \(N > 2\). Further, it is found that the necessary and sufficient condition for the existence of a unique solution for boundary layer flow (without separation) even in the presence of blowing \((k < 0)\) is \(N > 2\). For given value of \(k\), velocity at a point increases with increase in \(N\). It is also shown that when \(N > 2\), blowing makes the boundary layer thinner. A similarity solution for steady temperature distribution in the divergent flow is also presented when the channel walls are held at variable temperature. It is found that for fixed value of wall suction, temperature at a point decreases with increase in \(N\). It is further shown that when \(N > 2\), steady distribution of temperature exists even in the case of blowing at the walls.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jeffery G.B.: The two-dimensional steady motion of a viscous fluid. Philos. Mag. Ser. 6 29, 455 (1915) · JFM 45.1088.01 · doi:10.1080/14786440408635327
[2] Hamel G.: Spiralförmige Bewegung zäher Flüssigkeiten. Jahresber. d. Dt. Mathematiker-Vereinigung 25, 34 (1916) · JFM 46.1255.01
[3] Harrison W.J.: The pressure in a viscous liquid moving through channel with diverging boundaries. Proc. Camb. Philos. Soc. 19, 307 (1919)
[4] Tollmien, W.: Gnenzschichtheoric, Handbuch der Experimental Physik, vol. 4, Teil 1. Akadeneisahe Verlagsgesellschaft, p. 241 (1921)
[5] Noether, F.: Handbuch der Physikalischen und Technischen Mechanik, vol. 5. Leipzig, J. A. Barch, p. 733 (1931) · Zbl 0002.07202
[6] Dean W.R.: Note on the divergent flow of fluid. Philos. Mag. (7) 18, 759 (1934) · JFM 60.0731.02
[7] Rosenhead L.: The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc. R. Soc. Lond. Sec. A 175, 436 (1940) · JFM 66.1385.02 · doi:10.1098/rspa.1940.0068
[8] Goldstein, S., (ed.): Modern Developments in Fluid Dynamics, vol. 1. Oxford University Press (1938) · JFM 64.0874.03
[9] Landau L., Lifshitz E.M.: Fluid Mechanics. Pergamon Press, NY (1959) · Zbl 0146.22405
[10] Dryden H., Murnaghan F., Bateman H.: Hydrodynamics. Dover, New York (1932)
[11] Whitham G.B.: The Navier-Stokes equations of motion. In: Rosenhead, L. (ed.) Laminar Boundary Layers, pp. 114. Clarendon Press, Oxford (1963)
[12] Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967) · Zbl 0152.44402
[13] Millsaps K., Pohlhausen K.: Thermal distributions in Jeffery-Hamel flows between non-parallel plane walls. J. Aero. Sci. 20, 187 (1953) · Zbl 0050.19602 · doi:10.2514/8.2587
[14] Jungclaus G.: Two-dimensional boundary layers and jets in magneto-fluid dynamics. Rev. Mod. Phys. 32, 823 (1960) · Zbl 0099.21202 · doi:10.1103/RevModPhys.32.823
[15] Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961) · Zbl 0142.44103
[16] Cowling T.G.: Magnetohydrodynamics. Interscience Publishers, Inc., New York (1957)
[17] Axford, W.L.: The magnetohydrodynamic Jeffery–Hamel problem for a weakly conducting fluid. Q. J. Mech. Appl. Math. 14(3), 335 (1961) · Zbl 0106.40801
[18] Shercliff J.A.: A Textbook of Magnetohydnamics. Pergamon Press, NY (1965) · Zbl 0134.22101
[19] Holstein, H.: Ähnliche laminare Reibungsschichten an durchlässigen Wänden. ZWB-VM, p. 3050 (1943)
[20] Schlichting H., Gersten K.: Boundary Layer Theory, 8th revised edition. Springer, Berlin (2000) · Zbl 0940.76003
[21] Saaty T.L., Bram J.: Nonlinear Mathematics. McGraw Hill, New York (1964)
[22] Demazure M.: Bifurcations and Catastrophes, pp. 304. Springer, Berlin (2000) · Zbl 0959.37002
[23] Coppel W.A.: Dichotomies in Stability Theory, Lecture Notes in Mathematics No 629. Springer, Berlin (1978) · Zbl 0376.34001
[24] Bakker P.G.: Bifurcations in Flow Patterns. Kluwer, Dordrecht (1991) · Zbl 0755.76001
[25] Anderson D.A., Tannehill J.C., Pletcher R.H.: Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing Corporation, New York (1984) · Zbl 0569.76001
[26] Gersten K., Körner H.: Wärmeübergang unter Berücksichtigung der Reibungswärme bei laminaren Keilströmungen mit veränderlicher Temperatur und Normalgeschwindigkeit entlang der Wand. Int. J. Heat Mass Transf. 11, 655 (1968) · Zbl 0155.55101 · doi:10.1016/0017-9310(68)90068-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.