×

zbMATH — the first resource for mathematics

Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. (English) Zbl 1318.60049
Summary: We prove that the susceptibility of the continuous-time weakly self-avoiding walk on \(\mathbb Z^d\), in the critical dimension \(d=4\), has a logarithmic correction to mean-field scaling behaviour as the critical point is approached, with exponent \(\frac{1}{4}\) for the logarithm. The susceptibility has been well understood previously for dimensions \(d\geq 5\) using the lace expansion, but the lace expansion does not apply when \(d=4\). The proof begins by rewriting the walk two-point function as the two-point function of a supersymmetric field theory. The field theory is then analysed via a rigorous renormalisation group method developed in a companion series of papers. By providing a setting where the methods of the companion papers are applied together, the proof also serves as an example of how to assemble the various ingredients of the general renormalisation group method in a coordinated manner.

MSC:
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aizenman, M., Geometric analysis of \({φ^4}\) fields and Ising models, parts I and II, Commun. Math. Phys., 86, 1-48, (1982) · Zbl 0533.58034
[2] Aragão de Carvalho, C.; Caracciolo, S.; Fröhlich, J., Polymers and \({g|ϕ|^4}\) theory in four dimensions, Nucl. Phys. B, 215, 209-248, (1983)
[3] Bauerschmidt, R., A simple method for finite range decomposition of quadratic forms and Gaussian fields, Probab. Theory Relat. Fields, 157, 817-845, (2013) · Zbl 1347.60037
[4] Bauerschmidt, R., Brydges, D.C., Slade, G.: (in preparation)
[5] Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. (2015). doi:10.1007/s00220-015-2353-5 · Zbl 1320.82031
[6] Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys. 159, 492-529 (2015) · Zbl 1319.82008
[7] Bauerschmidt, R., Brydges, D.C., Slade, G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. Ann. Henri Poincaré 16, 1033-1065 (2015) · Zbl 1347.37041
[8] Bauerschmidt, R.; Brydges, D.C.; Slade, G., Scaling limits and critical behaviour of the 4-dimensional \(n\)-component \({|φ|^4}\) spin model, J. Stat. Phys, 157, 692-742, (2014) · Zbl 1308.82026
[9] Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G.: Lectures on self-avoiding walks. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Clay Mathematics Proceedings of Probability and Statistical Physics in Two and More Dimensions, vol. 15, pp. 395-467. American Mathematical Society, Providence (2012) · Zbl 1317.60125
[10] Berezin F.A.: The Method of Second Quantization. Academic Press, New York (1966) · Zbl 0151.44001
[11] Bovier, A.; Felder, G.; Fröhlich, J., On the critical properties of the edwards and the self-avoiding walk model of polymer chains, Nucl. Phys. B, 230, 119-147, (1984)
[12] Brézin, E.; Le Guillou, J.C.; Zinn-Justin, J., Approach to scaling in renormalized perturbation theory, Phys. Rev. D, 8, 2418-2430, (1973)
[13] Brydges, D.; Evans, S.N.; Imbrie, J.Z., Self-avoiding walk on a hierarchical lattice in four dimensions, Ann. Probab., 20, 82-124, (1992) · Zbl 0742.60067
[14] Brydges, D., Slade, G., et al.: Renormalisation group analysis of weakly self-avoiding walk in dimen sions four and higher. In: Bhatia, R. (ed.) Proceedings of the International Congress of Mathematicians, Hyderabad 2010, pp. 2232-2257. World Scientific, Singapore (2011) · Zbl 1230.82028
[15] Brydges, D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, vol. 16, pp. 7-93. American Mathematical Society, IAS/Park City Mathematics Series, Providence (2009) · Zbl 1186.82033
[16] Brydges, D.C., Dahlqvist, A., Slade, G.: The strong interaction limit of continuous-time weakly self-avoiding walk. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems: In Honour of Erwin Bolthausen and Jürgen Gärtner, Springer Proceedings in Mathematics, vol. 11, pp. 275-287. Springer, Berlin (2012) · Zbl 1246.82042
[17] Brydges, D.C.; Guadagni, G.; Mitter, P.K., Finite range decomposition of Gaussian processes, J. Stat. Phys., 115, 415-449, (2004) · Zbl 1157.82304
[18] Brydges, D.C.; Imbrie, J.Z., End-to-end distance from the green’s function for a hierarchical self-avoiding walk in four dimensions, Commun. Math. Phys., 239, 523-547, (2003) · Zbl 1036.82011
[19] Brydges, D.C.; Imbrie, J.Z., Green’s function for a hierarchical self-avoiding walk in four dimensions, Commun. Math. Phys., 239, 549-584, (2003) · Zbl 1087.82010
[20] Brydges, D.C.; Imbrie, J.Z.; Slade, G., Functional integral representations for self-avoiding walk, Probab. Surv., 6, 34-61, (2009) · Zbl 1193.82014
[21] Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. 159, 421-460 (2015) · Zbl 1317.82013
[22] Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. 159, 461-491 (2015) · Zbl 1317.82014
[23] Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. 159, 530-588 (2015) · Zbl 1317.82015
[24] Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589-667 (2015) · Zbl 1317.82016
[25] Brydges, D.C.; Slade, G., The diffusive phase of a model of self-interacting walks, Probab. Theory Relat. Fields, 103, 285-315, (1995) · Zbl 0832.60096
[26] Brydges, D.C.; Spencer, T., Self-avoiding walk in 5 or more dimensions, Commun. Math. Phys., 97, 125-148, (1985) · Zbl 0575.60099
[27] de Gennes, P.G., Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A, 38, 339-340, (1972)
[28] Disertori, M.; Spencer, T., Anderson localization for a supersymmetric sigma model, Commun. Math. Phys., 300, 659-671, (2010) · Zbl 1203.82017
[29] Disertori, M.; Spencer, T.; Zirnbauer, M.R., Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model, Commun. Math. Phys., 300, 435-486, (2010) · Zbl 1203.82018
[30] Duplantier, B., Polymer chains in four dimensions, Nucl. Phys. B, 275, 319-355, (1986)
[31] Feldman, J.; Magnen, J.; Rivasseau, V.; Sénéor, R., Construction and Borel summability of infrared \({Φ^4_4}\) by a phase space expansion, Commun. Math. Phys., 109, 437-480, (1987)
[32] Feller W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971) · Zbl 0219.60003
[33] Fröhlich, J., On the triviality of \({φ_d^4}\) theories and the approach to the critical point in \(d\) ≥ 4 dimensions, Nucl. Phys., B200, 281-296, (1982)
[34] Gawȩdzki, K.; Kupiainen, A., Massless lattice \({φ^4_4}\) theory: rigorous control of a renormalizable asymptotically free model, Commun. Math. Phys., 99, 199-252, (1985)
[35] Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories. Amsterdam, (1986). North-Holland, Les Houches (1984)
[36] Golowich, S.E.; Imbrie, J.Z., The broken supersymmetry phase of a self-avoiding random walk, Commun. Math. Phys., 168, 265-319, (1995) · Zbl 0822.60064
[37] Gruber, C.; Kunz, H., General properties of polymer systems, Commun. Math. Phys., 22, 133-161, (1971)
[38] Hara, T., A rigorous control of logarithmic corrections in four dimensional \({φ^4}\) spin systems. I. trajectory of effective Hamiltonians, J. Stat. Phys., 47, 57-98, (1987)
[39] Hara, T., Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals, Ann. Probab., 36, 530-593, (2008) · Zbl 1142.82006
[40] Hara, T.; Slade, G., Self-avoiding walk in five or more dimensions. I. the critical behaviour, Commun. Math. Phys., 147, 101-136, (1992) · Zbl 0755.60053
[41] Hara, T.; Tasaki, H., A rigorous control of logarithmic corrections in four dimensional \({φ^4}\) spin systems. II. critical behaviour of susceptibility and correlation length, J. Stat. Phys., 47, 99-121, (1987)
[42] den Hollander, F.: Random Polymers, Lecture Notes in Mathematics. Ecole d’Eté de Probabilités de Saint-Flour XXXVII-2007, vol. 1974. Springer, Berlin (2009) · Zbl 0742.60067
[43] Iagolnitzer, D.; Magnen, J., Polymers in a weak random potential in dimension four: rigorous renormalization group analysis, Commun. Math. Phys., 162, 85-121, (1994) · Zbl 0796.60105
[44] Itzykson C., Drouffe J.-M.: Statistical Field Theory, vol. I. Cambridge University Press, Cambridge (1989) · Zbl 0825.81001
[45] Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Sov. Phys. JETP 29, 1123-1128 (1969); English translation of Zh. Eksp. Teor. Fiz. 56, 2087-2098 (1969) · Zbl 0832.60096
[46] Lawler, G.F., Gaussian behavior of loop-erased self-avoiding random walk in four dimensions, Duke Math. J., 53, 249-269, (1986) · Zbl 0664.60068
[47] Lawler, G.F.: The logarithmic correction for loop-erased walk in four dimensions. J. Fourier Anal. Appl. In: Special Issue: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, June 28-July 3 1993), pp. 347-362 (1995) · Zbl 0889.60075
[48] Lawler, G.F.; Schramm, O.; Werner, W., On the scaling limit of planar self-avoiding walk, Proc. Symp. Pure Math., 72, 339-364, (2004) · Zbl 1069.60089
[49] Le Jan, Y.: Temps local et superchamp. In: Séminaire de Probabilités XXI. Lecture Notes in Mathematics #1247, pp. 176-190. Springer, Berlin (1987) · Zbl 0632.60049
[50] Luttinger, J.M., The asymptotic evaluation of a class of path integrals. II, J. Math. Phys., 24, 2070-2073, (1983)
[51] Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993) · Zbl 0780.60103
[52] McKane, A.J., Reformulation of \(n\) → 0 models using anticommuting scalar fields, Phys. Lett. A, 76, 22-24, (1980)
[53] Mitter, P.K.; Scoppola, B., The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({{\mathbb Z}^3}\), J. Stat. Phys., 133, 921-1011, (2008) · Zbl 1161.82310
[54] Nienhuis, B., Exact critical exponents of the \(O\)(\(n\)) models in two dimensions, Phys. Rev. Lett., 49, 1062-1065, (1982)
[55] Ohno, M.: (in preparation) · Zbl 0533.58034
[56] Parisi, G.; Sourlas, N., Self-avoiding walk and supersymmetry, J. Phys. Lett., 41, l403-l406, (1980)
[57] Rudin W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976) · Zbl 0346.26002
[58] Schram, R.D., Barkema, G.T., Bisseling, R.H.: Exact enumeration of self-avoiding walks. J. Stat. Mech. P06019 (2011)
[59] Slade, G.: The Lace Expansion and its Applications, Lecture Notes in Mathematics vol. 1879. Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004. Springer, Berlin (2006) · Zbl 1113.60005
[60] Slade, G., Tomberg, A.: Critical correlation functions for the 4-dimensional weakly self-avoiding walk and \(n\)-component \({|φ|^4}\) model. arXiv:1412.2668 · Zbl 1342.82070
[61] Wegner, F.J.; Riedel, E.K., Logarithmic corrections to the molecular-field behavior of critical and tricritical systems, Phys. Rev. B, 7, 248-256, (1973)
[62] Wilson, K.G.; Kogut, J., The renormalization group and the \({ϵ}\) expansion, Phys. Rep., 12, 75-200, (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.