×

Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant. (English) Zbl 1318.53054

Summary: We prove that, among all \((n+1)\)-dimensional spin static vacua with positive cosmological constant, the de Sitter spacetime is characterized by the fact that its spatial Killing horizons have minimal modes for the Dirac operator. As a consequence, the de Sitter spacetime is the only vacuum of this type for which the induced metric tensor on some of its Killing horizons is at least equal to that of a round \((n-1)\)-sphere. This extends uniqueness theorems shown in Boucher et al. (Phys Rev D 30:2447, 1984). Chruściel [2]. to more general horizon metrics and to the non-single horizon case.

MSC:

53C40 Global submanifolds
53C80 Applications of global differential geometry to the sciences
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Boucher, W; Gibbons, GW; Horowitz, GT, Uniqueness theorem for anti-de Sitter spacetime, Phys. Rev. D, 30, 2447, (1984)
[2] Chruściel, P.T. : Remarks on rigidity of the de Sitter metric. [homepage.univie.ac.at/piotr.chrusciel/papers/deSitter/deSitter2] (unpublished) · Zbl 1202.83068
[3] Kanai, M, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math., 6, 143, (1983) · Zbl 0534.53037
[4] Obata, M, Certain conditions for a Riemannian manifold to be isometric to a sphere, J. Math. Soc. Jpn., 14, 333, (1962) · Zbl 0115.39302
[5] Lafontaine, J, A remark about static space times, J. Geom. Phys., 59, 50, (2003) · Zbl 1162.53051
[6] Bourguignon, JP, Une stratification de l’espace des structures riemanniennes, Compt. Math., 30, 1, (1975) · Zbl 0301.58015
[7] Fischer, AE; Marsden, JE, Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math., 27, 219, (1975)
[8] Qing, J; Yuan, W, A note on static spaces and related problems, J. Geom. Phys., 74, 18, (2013) · Zbl 1287.83016
[9] Shen, Y, A note on fischer-marsden’s conjecture, Proc. Am. Math. Soc., 125, 901, (1997) · Zbl 0867.53035
[10] Reilly, RC, Applications of the hessian operator in a Riemannian manifold, Indiana Univ. Math. J., 26, 459, (1977) · Zbl 0391.53019
[11] Kobayashi, O, A differential equation arising from scalar curvature, J. Math. Soc. Jpn., 34, 665, (1982) · Zbl 0486.53034
[12] Lafontaine, J, Sur la géométrie d’une généralisation de l’équation différentielle d’obata, J. Math. Pures Appl., 9, 63, (1983) · Zbl 0513.53046
[13] Lindblom, L, Static uniform-density stars must be spherical in general relativity, J. Math. Phys., 29, 436, (1988) · Zbl 0641.76139
[14] Anderson, M, On stationary vacuum solutions to the Einstein equations, Ann. Henri Poincaré, 1, 977, (2005) · Zbl 1005.53055
[15] Andersson, L; Dahl, M, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Glob. Anal. Geom., 16, 1, (1998) · Zbl 0946.53021
[16] Chruściel, PT; Herzlich, M, The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math., 212, 231, (2003) · Zbl 1056.53025
[17] Chruściel, PT; Simon, W, Towards the classification of static vacuum spacetimes with negative cosmological constant, J. Math. Phys., 42, 1779, (2001) · Zbl 1009.83009
[18] Galloway, GJ; Surya, S; Woolgar, E, On the geometry and mass of static, asymptotically AdS spacetimes, and the uniqueness of the AdS soliton, Commun. Math. Phys., 241, 1, (2003) · Zbl 1149.83309
[19] Hijazi, O., Montiel, S. : Uniqueness of the AdS spacetime among static vacua with prescribed null infinity, Adv. Th. Math. Phys. (2014). [ arxiv.org/abs/1211.5651]. · Zbl 1309.83014
[20] Lee, JM, The spectrum of an asymptotically hyperbolic Einstein manifold, Commun. Anal. Geom., 2, 253, (1995) · Zbl 0934.58029
[21] Wang, X, The mass of asymptotically hyperbolic manifolds, J. Diff. Geom., 57, 273, (2001) · Zbl 1037.53017
[22] Wang, X, Uniqueness of the ADS space time in any dimension, Acta Math. Sin., 21, 917, (2005) · Zbl 1082.53040
[23] Anderson, M, On the structure of solutions to the static vacuum Einstein equations, Ann. H. Poincaré, 1, 995, (2000) · Zbl 0981.83013
[24] Bunting, G; Masood-ul-Alam, AKM, Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time, Gen. Relativ. Grav., 19, 147, (1987) · Zbl 0615.53055
[25] Chruściel, PT, The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior, Class. Quantum Grav., 16, 661, (1999) · Zbl 0947.83031
[26] Israel, W, Event horizons in static vacuum space-times, Phys. Rev., 164, 1776, (1967)
[27] Gibbons, GW; Hartnoll, SA; Pope, CN, Bohm and Einstein-Sasaki metrics, black holes and cosmological event horizons, Phys. Rev. D, 67, 84024, (2003)
[28] Böhm, C, Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces, Invent. Math., 134, 145, (1998) · Zbl 0965.53033
[29] LeFloch, PG; Rozoy, L, Uniqueness of kottler spacetime and the besse conjecture, C. R. Acad. Sci. Paris Ser., I , 1129, (2010) · Zbl 1202.83068
[30] Masood-ul-Alam, A.K.M. :Static equations with positive cosmological constant. [ msc.tsinghua.edu.cn/upload/news_201241144839] (unpublished) · Zbl 0613.53038
[31] Herzlich, M, Extremality for the Vafa-Witten bound on the sphere, Geom. Funct. Anal., 15, 1153, (2005) · Zbl 1137.53334
[32] Vafa, C; Witten, E, Eigenvalue inequalities for fermions in gauge theories, Commun. Math. Phys., 95, 257, (1984)
[33] Qing, J, On the rigidity for conformally compact Einstein manifolds, Intern. Math. Res. Note, 21, 1141, (2003) · Zbl 1042.53031
[34] Besse, A.: Einstein manifolds. Springer, New York (1987) · Zbl 0613.53001
[35] Escobar, JF, Conformal deformation of a riemannian metric to a scalar flat metric with constant Mean curvature on the boundary, Ann. Math., 136, 1, (1992) · Zbl 0766.53033
[36] Baum, H., Friedrich, T., Grünewald, R., Kath, I.: Twistor and Killing Spinors on Riemannian Manifolds, Teubner-Texte zur Mathematik, vol. 124. Teubner-Verlag, Sttugart/Leipzig (1991)
[37] Friedrich, T. : Dirac operators in riemannian geometry, AMS Graduate Studies in Math., vol. 25, (2000) · Zbl 0949.58032
[38] Lawson, H.B., Michelsohn, M.L.: Spin Geometry, Princeton Math. Series, vol. 38. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[39] Bourguignon, J.-P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A spinorial approach to Riemannian and conformal geometry, to appear in Monographs in Mathematics, EMS (2014) · Zbl 1348.53001
[40] Bär, C, Extrinsic bounds of the Dirac operator, Ann. Glob. Anal. Geom., 16, 573, (1998) · Zbl 0921.58065
[41] Hijazi, O; Montiel, S; Zhang, X, Dirac operator on embedded hypersurfaces, Math. Res. Lett, 8, 195, (2001) · Zbl 0988.53019
[42] Hijazi, O; Montiel, S; Zhang, X, Conformal lower bounds for the Dirac operator of embedded hypersurfaces, Asian J. Math., 6, 23, (2002) · Zbl 1016.58013
[43] Ginoux, N. : The dirac spectrum. Lecture Notes in Mathematics, vol. 1976. Springer, Berlin, Heidelberg (2009) · Zbl 1186.58020
[44] Hitchin, N, Harmonic spinors, Adv. Math., 14, 1, (1974) · Zbl 0284.58016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.